A virtual reality (VR) based vascular intervention simulation system is introduced in this paper, which helps trainees develop surgical skills and experience complications in safety remote from patients. The system simulates interventional radiology procedures, in which flexible tipped guidewires are employed to advance diagnostic or therapeutic catheters into vascular anatomy of a patient. A real-time physically-based modeling approach ground on Kirchhoff elastic rod is proposed to simulate complicated behaviors of guidewires and catheters. The slender body of guidewire and catheter is modeled using more efficient special case of naturally straight, isotropic Kirchhoff rods, and the shorter flexible tip composed of straight or angled design is modeled using more complex generalized Kirchhoff rods. The motion equations for guidewire and catheter were derived with continuous elastic energy, followed by a discretization using a linear implicit scheme that guarantees stability and robustness. In addition, we used a fast-projection method to enforce the inextensibility of guidewire and catheter. An adaptive sampling algorithm was also implemented to improve the simulation efficiency without decrease of accuracy. Experimental results revealed that our system is both robust and efficient in a real-time performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2014.08.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!