We report an experimental investigation of RbSr molecules attached to helium nanodroplets. The molecules are prepared on the surface of helium droplets by utilizing a sequential pickup scheme. We provide a detailed analysis of the excitation spectrum in the wavelength range 11,600-23,000 cm(-1). The spectrum has been recorded by resonance enhanced multi-photon ionization time-of-flight spectroscopy. The inherent mass sensitivity of the method allows for an unraveling of the RbSr spectrum, which is influenced by Rb and Sr dimer contributions, because of the proximity of their respective isotopologues. In addition, the vibrationally resolved 4(2)Σ(+) band was investigated using laser induced fluorescence spectroscopy. The vibronic transitions exhibit a lambda-shaped peak form, which is characteristic of excitations on helium droplets and indicative of strong coupling of the molecule to the superfluid helium environment. Furthermore, the vibrationally resolved 4(2)Σ(+) state enables the determination of molecular parameters, which are in excellent agreement with previously measured dispersed fluorescence spectra, originating from bare RbSr molecules. The assignment of recorded transitions is based on calculated transition dipole moments and potential energy curves. The theoretical results allow for the identification of transitions from the vibronic X(2)Σ(+) ground state to the 2(2)Π, 3(2)Σ(+), 4(2)Σ(+), 3(2)Π, 4(2)Π and 6(2)Σ(+) states. The detailed investigation of RbSr on helium droplets provides a solid basis for further high resolution gas phase studies of this diatomic molecule that holds promise in the area of cold molecular physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp03135k | DOI Listing |
Rep Prog Phys
January 2025
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, Midtjylland, 8000, DENMARK.
Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.
View Article and Find Full Text PDFRep Prog Phys
January 2025
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, Midtjylland, 8000, DENMARK.
Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Departament FQA, Facultat de Física, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
We study superfluid helium droplets multiply charged with Na+ or Ca+ ions. When stable, the charges are found to reside in equilibrium close to the droplet surface, thus representing a physical realization of Thomson's model. We find the minimum radius of the helium droplet that can host a given number of ions using a model whose physical ingredients are the solvation energy of the cations, calculated within the helium density functional theory approach, and their mutual Coulomb repulsion energy.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!