In order to investigate the changes of secondary metabolites content of alfalfa induced by thrips Odontothrips loti damaging, two alfalfa strains, one resistant to thrips (R-1) and the other susceptible to thrips (I-1) , were chosen to measure the phenols and lignin contents of alfalfa leaves under infestation with thrips at different densities (0, 1, 3, 5, 7 thrips x branch(-1), and 0 thrip x branch(-1) as control). After infestation 7 days, the polyphenols, tannin and condensed tannin contents increased in both leaves of R-l and I-i with the increasing thrips density, the simple phenols content had no significant difference, while the lignin content increased significantly compared with the control. After infestation 14 days, the polyphenols, tannin, condensed tannin and lignin contents in both leaves of R-1 and I-1 increased obviously with the increasing thrips density, while the simple phenols content had no significant difference. The lignin content increased significantly, and was significantly higher under 7 thrips x branch(-1) than under the control. After infestation 21 days, the polyphenols, tannin, and lignin contents in both leaves of R-1 and I-1 increased obviously with the increasing thrips density, and were the highest under 7 thrips x branch(-1). Simple phenols content of I-1 strain was increased significantly, but that of R-1 strain had no significant change. The condensed tannin content in both leaves of R-1 and I-1 was not obvious compared with the control. Phenols and lignin contents in R-1 and I-1 leaves increased obviously after thrips infestation, and the polyphenols, tannin and lignin contents increased faster in R-1 strain than in I-1 strain. Thrips infestation had inductive effects on phenols and lignin contents of alfalfa, which could be used to evaluate the resistance of alfalfa.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lignin contents
28
phenols lignin
16
polyphenols tannin
16
r-1 i-1
16
contents alfalfa
12
thrips
12
thrips branch-1
12
control infestation
12
infestation days
12
days polyphenols
12

Similar Publications

The inherent heterogeneity, poor compatibility with polymers, and dark color of lignin limit its application in composites. In this study, original lignin (OL) was fractionated sequentially using four green organic solvents to obtain lignin fractions with different chemical structures. These well-defined lignin fractions were then blended with polybutylene succinate (PBS) to fabricate biocomposites.

View Article and Find Full Text PDF

Hydrophilic phenol-formaldehyde (PF) foams, widely used in floral and hydroponic applications, are produced using phenol typically derived from non-renewable petroleum-based resources. This study examines the potential of depolymerized Kraft lignin (DKL) as a sustainable substitute for phenol in the synthesis of hydrophilic biobased foams. At 50 % DKL substitution, the foams demonstrated excellent water absorption capacities (up to 2557 %), relatively low densities (∼62 kg/m), and nearly 100 % open-cell content.

View Article and Find Full Text PDF

Rice yield could be increased by apply higher level of nitrogen fertilizer, but excessive use of nitrogen fertilizer will cause plant lodging. This study aimed to investigate the effect of nitrogen application rate on lodging resistance of rice stems. Four japonica rice varieties with different lodging resistance were used, and six nitrogen fertilizer levels were set up to analyze the morphological structure, mechanical properties, and chemical components of rice stems under such treatments.

View Article and Find Full Text PDF

Shading stress promotes lignin biosynthesis in soybean seed coat and consequently extends seed longevity.

Int J Biol Macromol

January 2025

College of Life Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China. Electronic address:

The macromolecular components of the seed coat, particularly lignin, play a critical role in regulating seed viability. In the maize-soybean intercropping (MSI) system, shading stress was reported to enhance the viability of soybean seeds. However, the specific role of seed coat lignin in this process remains poorly understood.

View Article and Find Full Text PDF

Synergistic action of multiple degumming-related enzymes secreted by Bacillus subtilis XW-18: Decisive factor for driving the bio-degumming process of raw pineapple leaves.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China. Electronic address:

Degumming, a process of removing gummy substances surrounding fiber, plays a crucial role in preparing plant fibers. This study clearly clarified that the multiple degumming enzymes by Bacillus subtilis XW-18 acted as a decisive factor for driving bio-degumming process of raw pineapple leaves. Firstly, PCR analysis verified that B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!