Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2014.2357579 | DOI Listing |
Acta Bioeng Biomech
June 2024
1Department of Rehabilitation Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China.
: The purpose of this study was to quantify the impact of smartphone use while sitting on the toilet on the spinal flexion angles and the time effect. : Measurements of the spinal flexion angles in the sagittal plane were made by thirty participants while they sat on the toilet for 10 min, using a smartphone in either one, both, or neither hand. The individual's forehead, cervical, thoracic and lumbar spinal areas were each fitted with five different inertial motion sensors.
View Article and Find Full Text PDFSci Rep
January 2025
Science and Technology on Vacuum and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, 730000, China.
The Laser Interferometer Space Antenna (LISA) mission is designed to detect space gravitational wave sources in the millihertz band. A critical factor in the success of this mission is the residual acceleration noise metric of the internal test mass (TM) within the ultra-precise inertial sensors. Existing studies indicate that the coupling effects of residual gas and temperature gradient fluctuations significantly influence this metric, primarily manifesting as the radiometer effect and the outgassing effect.
View Article and Find Full Text PDFEur J Orthod
December 2024
Department of Orthodontics, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, United States.
Objectives: This study determined the prevalence and risks of definite sleep bruxism (SB) among children and adolescents presenting for orthodontic treatment.
Methods: This was a cross-sectional study of 7-16-year-old subjects pursuing orthodontic treatment for the first time. The presence or absence of SB was determined using an overnight mandibular movement monitoring inertial measurement sensor, worn by each participant for two consecutive nights.
HardwareX
March 2025
Instituto de Investigacion Astronomico y Aeroespacial Pedro Paulet, Universidad Nacional de San Agustin de Arequipa, 04000, Arequipa, Peru.
Inertial navigation systems (INS) are widely used in commercial aviation, maritime navigation, and unmanned vehicle guidance. However, these systems are often sensitive, costly, and challenging to access. To address these limitations, an open-source, low-cost platform named INS OpenNavSense has been developed.
View Article and Find Full Text PDFACM Trans Access Comput
December 2024
University of California, Santa Cruz, 1156 High Street, Santa Cruz, California, USA.
We describe two iOS apps designed to support blind travelers navigating in indoor building environments. The Wayfinding app provides guidance to a blind user while following a certain route. The Backtracking app records the route taken by the walker towards a certain destination, then provides guidance while re-tracing the same trajectory in the opposite direction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!