The inorganic phase-change photoresist Ge2Sb1.5Bi0.5Te5 has a lot of advantages such as the two-sides of the photoresist, a large difference in the etching rate between it and Si, and so on, making it a promising candidate for use in the full-vacuum manufacture of the next generation ultra-large scale integrated circuits (ULSI). However, the physical origin of its excellent properties is still unclear, hindering its improvement and the optimization of its performance. In this work, we extended the Ge2Sb1.5Bi0.5Te5 to Ge2Sb2(1-x)Bi2xTe5 (GSBT, x = 0.1, 0.25, 0.35) and further investigated their properties. Using X-ray diffraction and X-ray absorption fine structure (XAFS) analyses, we built the structures of crystalline and amorphous GSBT, and attributed the excellent physical and chemical properties of crystalline GBST to the different atomic structures compared to amorphous GBST. Moreover, we clarified that the performance of GSBT was enhanced by the increase of Bi, accompanied by a decrease of the phase-change temperature, and gave a criterion for improving GSBT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp03315a | DOI Listing |
Sci Rep
January 2025
Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.
Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Engineering and Architecture, Universidad La Salle Oaxaca, Camino a San Agustín No. 407, Santa Cruz Xoxocotlán, Oaxaca 71230, Mexico.
Nuclear magnetic resonance relaxation of the proton spins of liquid molecules and their evolution during processes such as drying, fluid flow, and phase change of a sample can be monitored in a nondestructive way. A unilateral H NMR sensor made with a permanent magnet array, inspired by the NMR MOUSE, with an RF coil tuned to 11.71 MHz was developed.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
Nanophotonics
August 2024
Friedrich-Schiller University Jena, Jena, Germany.
High-order harmonic generation (HHG) in solids opens new frontiers in ultrafast spectroscopy of carrier and field dynamics in condensed matter, picometer resolution structural lattice characterization and designing compact platforms for attosecond pulse sources. Nanoscale structuring of solid surfaces provides a powerful tool for controlling the spatial characteristics and efficiency of the harmonic emission. Here we study HHG in a prototypical phase-change material GeSbTe (GST).
View Article and Find Full Text PDFJ Chem Theory Comput
November 2024
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
Machine learning-based interatomic potentials enable accurate materials simulations on extended time- and length scales. ML potentials based on the atomic cluster expansion (ACE) framework have recently shown promising performance for this purpose. Here, we describe a largely automated computational approach to optimizing hyperparameters for ACE potential models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!