Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The chemical reactivity of styrene-7,8-oxide (SO), an alkylating agent with high affinity for the guanine–N7 position and a probable carcinogen for humans, with 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, was investigated kinetically in water/dioxane media. UV–vis spectrophotometry and ultrafast liquid chromatography were used to monitor the reactions involved. It was found that in the alkylation process four reactions occur simultaneously: (a) the formation of a β-NBP–SO adduct through an SN2 mechanism; (b) the acid-catalyzed formation of the stable α-NBP–SO adduct through an SN2′ mechanism; (c) the base-catalyzed hydrolysis of the β-adduct, and (d) the acid-catalyzed hydrolysis of SO. At 37.5 °C and pH = 7.0 (in 7:3 water/dioxane medium), the values of the respective reaction rate constants were as follows: kalkβ = (2.1 ± 0.3) × 10–4 M–1 s–1, kalkα = (1.0 ± 0.1) × 10–4 M–1 s–1, khydAD = (3.06 ± 0.09) × 10–6 s–1, and khyd = (4.2 ± 0.9) × 10–6 s–1. These values show that, in order to determine the alkylating potential of SO, none of the four reactions involved can be neglected. Temperature and pH were found to exert a strong influence on the values of some parameters that may be useful to investigate possible chemicobiological correlations (e.g., in the pH 5.81–7.69 range, the fraction of total adducts formed increased from 24% to 90% of the initial SO, whereas the adduct lifetime of the unstable β-adduct, which gives an idea of the permanence of the adduct over time, decreased from 32358 to 13313 min). A consequence of these results is that the conclusions drawn in studies addressing alkylation reactions at temperatures and/or pH far from those of biological conditions should be considered with some reserve.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx5002892 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!