Uptake mechanisms for inorganic iron and ferric citrate in Trichodesmium erythraeum IMS101.

Metallomics

Geoscience Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA.

Published: November 2014

Growth of the prevalent marine organism Trichodesmium can be limited by iron in natural and laboratory settings. This study investigated the iron uptake mechanisms that the model organism T. erythraeum IMS101 uses to acquire iron from inorganic iron and iron associated with the weak ligand complex, ferric citrate. IMS101 was observed to employ two different iron uptake mechanisms: superoxide-mediated reduction of inorganic iron in the surrounding milieu and a superoxide-independent uptake system for ferric citrate complexes. While the detailed pathway of ferric citrate utilization remains to be elucidated, transport of iron from this complex appears to involve reduction and/or exchange of the iron out of the complex prior to uptake, either at the outer membrane of the cell or within the periplasmic space. Various iron uptake strategies may allow Trichodesmium to effectively scavenge iron in oligotrophic ocean environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4mt00026aDOI Listing

Publication Analysis

Top Keywords

ferric citrate
16
uptake mechanisms
12
iron
12
inorganic iron
12
iron uptake
12
erythraeum ims101
8
iron complex
8
uptake
6
mechanisms inorganic
4
ferric
4

Similar Publications

Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation.

View Article and Find Full Text PDF

Alkane degradation coupled to Fe(III) reduction mediated by Gram-positive bacteria.

J Hazard Mater

December 2024

State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:

Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.

View Article and Find Full Text PDF

We investigated the cost-effectiveness of treating iron deficiency anemia (IDA) with ferric citrate hydrate (FC) in Japan. We employed four treatment strategies: switching from sodium ferrous citrate (SF) to FC at (1) 500 mg (approximately 120 mg of iron) per day or (2) 1000 mg (approximately 240 mg of iron) per day in patients with SF-induced nausea/vomiting, or starting treatment with FC at (3) 500 mg/day or (4) 1000 mg/day. We evaluated the cost-effectiveness of these strategies compared with SF 100 mg (100 mg of iron) per day.

View Article and Find Full Text PDF

Cefiderocol (FDC), a siderophore-cephalosporin conjugate, is the newest option for treating infection with carbapenem-resistant gram-negative bacteria. We identified a novel mechanism contributing to decreased FDC susceptibility in Klebsiella pneumoniae clinical isolates. The mechanism involves 2 coresident plasmids: pKpQIL, carrying variants of bla carbapenemase gene, and pKPN, carrying the ferric citrate transport (FEC) system.

View Article and Find Full Text PDF

Salinomycin and its derivatives display promising anti-proliferating activity against bloodstream forms of . The mechanism of trypanocidal action of these compounds is due to their ionophoretic activity inducing an influx of sodium cations followed by osmotic water uptake, leading to massive swelling of bloodstream-form trypanosomes. Generally, higher trypanocidal activities of salinomycin derivatives are associated with higher cell swelling activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!