United States Environmental Protection Agency (USEPA) researchers are developing a strategy for high-throughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologically relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-MM), a new mechanistic modeling approach has been developed to accommodate high-throughput (HT) assessment of exposure potential. In this SHEDS-HT model, the residential and dietary modules of SHEDS-MM have been operationally modified to reduce the user burden, input data demands, and run times of the higher-tier model, while maintaining critical features and inputs that influence exposure. The model has been implemented in R; the modeling framework links chemicals to consumer product categories or food groups (and thus exposure scenarios) to predict HT exposures and intake doses. Initially, SHEDS-HT has been applied to 2507 organic chemicals associated with consumer products and agricultural pesticides. These evaluations employ data from recent USEPA efforts to characterize usage (prevalence, frequency, and magnitude), chemical composition, and exposure scenarios for a wide range of consumer products. In modeling indirect exposures from near-field sources, SHEDS-HT employs a fugacity-based module to estimate concentrations in indoor environmental media. The concentration estimates, along with relevant exposure factors and human activity data, are then used by the model to rapidly generate probabilistic population distributions of near-field indirect exposures via dermal, nondietary ingestion, and inhalation pathways. Pathway-specific estimates of near-field direct exposures from consumer products are also modeled. Population dietary exposures for a variety of chemicals found in foods are combined with the corresponding chemical-specific near-field exposure predictions to produce aggregate population exposure estimates. The estimated intake dose rates (mg/kg/day) for the 2507 chemical case-study spanned 13 orders of magnitude. SHEDS-HT successfully reproduced the pathway-specific exposure results of the higher-tier SHEDS-MM for a case-study pesticide and produced median intake doses significantly correlated (p<0.0001, R2=0.39) with medians inferred using biomonitoring data for 39 chemicals from the National Health and Nutrition Examination Survey (NHANES). Based on the favorable performance of SHEDS-HT with respect to these initial evaluations, we believe this new tool will be useful for HT prediction of chemical exposure potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es502513w | DOI Listing |
Cancer Cell Int
January 2025
Department of Toxicology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).
View Article and Find Full Text PDFLipids Health Dis
January 2025
Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.
Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption.
View Article and Find Full Text PDFBMC Genomics
January 2025
Cannabis Innovation and Research Center, Université de Moncton, Moncton, New-Brunswick, Canada.
Background: Due to its previously illicit nature, Cannabis sativa had not fully reaped the benefits of recent innovations in genomics and plant sciences. However, Canada's legalization of C. sativa and products derived from its flower in 2018 triggered significant new demand for robust genotyping tools to assist breeders in meeting consumer demands.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7024, 750 07, Uppsala, Sweden.
A cross-sectional study on 156 smallholder dairy farms in Rwanda was carried out to assess the association between farm management practices and milk yield and quality. A pre-tested questionnaire was used to collect data on cow characteristics and farm management practices. Milk yield was recorded at household level, milk composition was monitored using a Lactoscan device (Milk Analyzer).
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address:
Background: Bisphenol F (BPF), a substitute for bisphenol A (BPA), is widely used in consumer products, increasing the potential for environmental exposure. Our study investigated the reproductive effects of BPF on adult male zebrafish and explored its toxicological mechanisms, as well as its intergenerational effects.
Methods: Adult male zebrafish were exposed to BPF concentrations of 0, 50, 500, 2500, and 5000 nM for 21 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!