Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of addition of the nitric oxide donor S-nitrosoglutathione (GSNO) on the Zn nutritional status was evaluated in hydroponically-cultured wheat plants (Triticum aestivum cv. Chinese Spring). Addition of GSNO in Zn-deprived plants did not modify biomass accumulation but accelerated leaf senescence in a mode concomitant with accelerated decrease of Zn allocation to shoots. In well-supplied plants, Zn concentration in both roots and shoots declined due to long term exposure to GSNO. A further evaluation of net Zn uptake rate (ZnNUR) during the recovery of long-term Zn-deprivation unveiled that enhanced Zn-accumulation was partially blocked when GSNO was present in the uptake medium. This effect on uptake was mainly associated with a change of Zn translocation to shoots. Our results suggest a role for GSNO in the modulation of Zn uptake and in root-to-shoot translocation during the transition from deficient to sufficient levels of Zn-supply.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2014.08.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!