For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy. Comparison of the second-order rate constants measured for the direct reactions of the HRP-I and HRP-II mimics with the selected substrates clearly confirmed the outstanding oxidizing capability of the HRP-I mimic, which is significantly higher than that of HRP-II. The experimental study was supported by computational modeling (DFT calculations) of the oxidation mechanism of the selected substrates with the involvement of quartet and doublet HRP-I mimics ((2,4) Cpd I) and the closed-shell triplet spin HRP-II model ((3) Cpd II) as oxidizing species. The significantly lower activation barriers calculated for the oxidation systems involving (2,4) Cpd I than those found for (3) Cpd II are in line with the much higher oxidizing efficiency of the HRP-I mimic proven in the experimental part of the study. In addition, the DFT calculations show that all three reaction types catalyzed by HRP-I occur on the doublet spin surface in an effectively concerted manner, whereas these reactions may proceed in a stepwise mechanism with the HRP-II mimic as oxidant. However, the high desaturation or oxygen rebound barriers during CH bond activation processes by the HRP-II mimic predict a sufficient lifetime for the substrate radical formed through hydrogen abstraction. Thus, the theoretical calculations suggest that the dissociation of the substrate radical may be a more favorable pathway than desaturation or oxygen rebound processes. Importantly, depending on the electronic nature of the oxidizing species, that is, (2,4) Cpd I or (3) Cpd II, an interesting region-selective conversion phenomenon between sulfoxidation and H-atom abstraction was revealed in the course of the oxidation reaction of dimethylsulfide. The combined experimental and theoretical study on the elucidation of the intrinsic reactivity patterns of the HRP-I and HRP-II mimics provides a valuable tool for evaluating the particular role of the HRP active species in biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201402347 | DOI Listing |
Chemistry
October 2014
Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen (Germany); College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China).
For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy.
View Article and Find Full Text PDFJ Inorg Biochem
December 2012
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29073, USA.
Horseradish peroxidase (HRP) catalyzes the oxidative para-dechlorination of the environmental pollutant/carcinogen 2,4,6-trichlorophenol (2,4,6-TCP). A possible mechanism for this reaction is a direct oxygen atom transfer from HRP compound I (HRP I) to trichlorophenol to generate 2,6-dichloro 1,4-benzoquinone, a two-electron transfer process. An alternative mechanism involves two consecutive one-electron transfer steps in which HRP I is reduced to compound II (HRP II) and then to the ferric enzyme as first proposed by Wiese et al.
View Article and Find Full Text PDFActa Trop
May 2000
Instituto de Inmunologia, Hospital San Juan de Dios, Universidad Nacional de Colombia, Avda 1 No 10-01 Santafe de Bogotá, Colombia.
Histidine-rich proteins have been associated with Plasmodium falciparum infected red blood cells (RBC) cytoadherence, and RBC rosetting; these phenomena may cause clogging of the post-capillary venules, this being one of the main causes of severe cerebral malaria. They may also participate in parasite mature stages' evasion of the immune system and their subsequent destruction in the spleen. Non-overlapping synthetic peptides, corresponding to entire amino acid sequences reported for the KAHRP-I, HRP-II and HRP-III proteins, were used in RBC binding assays.
View Article and Find Full Text PDFEssays Biochem
June 2000
Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, USA.
Peroxidases are enzymes that utilize hydrogen peroxide to oxidize substrates. A histidine residue on the proximal side of the haem iron ligates most peroxidases. The various oxidation states and ligand complexes have been spectroscopically characterized.
View Article and Find Full Text PDFBiochem Mol Biol Int
June 1998
Department of Chemistry, Moscow State University, Russia.
Reactivity of horseradish peroxidase compounds I and II (HRP-I and HRP-II) toward organometallicic substrates, viz water-soluble ferrocenes RFc (R = COOH and CH2NMe2), has been studied at 25 degrees C, pH 6.0 and ionic strength 0.1 M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!