Asymmetric distribution of phosphatidylserine is generated in the absence of phospholipid flippases in Saccharomyces cerevisiae.

Microbiologyopen

Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, N15 W7, Kita-ku, Sapporo, 060-0815, Japan.

Published: October 2014

In eukaryotic cells, phosphatidylserine (PS) is predominantly located in the cytosolic leaflet of the plasma membrane; this asymmetry is generated by an unknown mechanism. In this study, we used the PS-specific probe mRFP-Lact-C2 to investigate the possible involvement of type 4 P-type ATPases, also called phospholipid flippases, in the generation of this asymmetry in Saccharomyces cerevisiae. PS was not found in the trans-Golgi Network in wild-type cells, but it became exposed when vesicle formation was compromised in the sec7 mutant, and it was also exposed on secretory vesicles (SVs), as reported previously. However, flippase mutations did not reduce the exposure of PS in either case, even at low levels that would only be detectable by quantitative analysis of mRFP-Lact-C2 fluorescence in isolated SVs. Furthermore, no reduction in the PS level was observed in a mutant with multiple flippase mutations. Because PS was not exposed in a mutant that accumulates ER or cis/medial-Golgi membranes, Golgi maturation seems to be a prerequisite for PS translocation. Our results suggest that an unknown mechanism, possibly a protein with flippase-like activity, acts in conjunction with known flippases to regulate PS translocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234269PMC
http://dx.doi.org/10.1002/mbo3.211DOI Listing

Publication Analysis

Top Keywords

phospholipid flippases
8
saccharomyces cerevisiae
8
unknown mechanism
8
flippase mutations
8
asymmetric distribution
4
distribution phosphatidylserine
4
phosphatidylserine generated
4
generated absence
4
absence phospholipid
4
flippases saccharomyces
4

Similar Publications

Its own architect: Flipping cardiolipin synthase.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Article Synopsis
  • Current understanding posits that lipid asymmetry in cell membranes is actively kept and not essential for survival, yet the inner membrane (IM) shows notable asymmetry.
  • Researchers created a specific mutant lacking phosphatidylethanolamine (PE) that relies on cardiolipin (CL) for its IM viability, uncovering how the distribution of CL is regulated in the membrane.
  • The study reveals that the enzyme ClsA adapts its structure in response to varying levels of PE, highlighting a potentially novel mechanism for sustaining lipid asymmetry in membranes without the need for specialized flippase proteins.
View Article and Find Full Text PDF

Advanced Method for the In Vivo Measurements of Lysophospholipid Translocation Across the Inner (Cytoplasmic) Membrane of Escherichia coli.

Methods Mol Biol

December 2024

Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.

Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC.

View Article and Find Full Text PDF

Phospholipid flippases in the P4-ATPase family are essential for establishing membrane asymmetry. These ATP-powered pumps translocate specific lipids from the exofacial leaflet to the cytosolic leaflet of the plasma membrane, thereby concentrating substrate lipids, such as phosphatidylserine, in the cytosolic leaflet while non-substrate lipids populate the exofacial leaflet. Here, we describe a method for measuring P4-ATPase transport activity in the yeast plasma membrane by using flow cytometry to quantify the uptake of lipids derivatized with a fluorescent [7-nitro-2-1,3-benzoxadiazol-4-yl)amino] (NBD) group on a short (C6) fatty acyl chain.

View Article and Find Full Text PDF

ATP8A2 expression is reduced in the mPFC of offspring mice exposed to maternal immune activation and its upregulation ameliorates synapse-associated protein loss and behavioral abnormalities.

Brain Behav Immun

December 2024

Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China. Electronic address:

Prenatal virus infection-induced maternal immune activation (MIA) is linked to a greater risk of neurodevelopmental disorders in offspring. Prenatal exposure to poly(I:C) in pregnant mice is a well-established approach to mimic virus infection-induced MIA, leading to neuropsychiatric disorders and aberrant brain development, especially in the medial prefrontal cortex (mPFC). ATPase phospholipid flippase 8A2 (ATP8A2) is the main phospholipid lipase, expressed in the mPFC and is crucial for maintaining cell membrane stability by flipping phosphatidylserine from the outer leaflet to the inner leaflet of the cell membrane.

View Article and Find Full Text PDF

Structural and functional properties of the N- and C-terminal segments of the P4-ATPase phospholipid flippase ATP8A2.

J Biol Chem

December 2024

Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:

ATP8A2 is a P4-ATPase that actively flips phosphatidylserine and to a lesser extent phosphatidylethanolamine across cell membranes to generate and maintain transmembrane phospholipid asymmetry. The importance of this flippase is evident in the finding that loss-of-function mutations in ATP8A2 are known to cause the neurodevelopmental disease known as cerebellar ataxia, intellectual disability, and dysequilibrium syndrome 4 (CAMRQ4) in humans and related neurodegenerative disorders in mice. Although significant progress has been made in understanding mechanisms underlying phospholipid binding and transport across the membrane domain, little is known about the structural and functional properties of the cytosolic N- and C-terminal segments of this flippase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!