In eukaryotic cells, phosphatidylserine (PS) is predominantly located in the cytosolic leaflet of the plasma membrane; this asymmetry is generated by an unknown mechanism. In this study, we used the PS-specific probe mRFP-Lact-C2 to investigate the possible involvement of type 4 P-type ATPases, also called phospholipid flippases, in the generation of this asymmetry in Saccharomyces cerevisiae. PS was not found in the trans-Golgi Network in wild-type cells, but it became exposed when vesicle formation was compromised in the sec7 mutant, and it was also exposed on secretory vesicles (SVs), as reported previously. However, flippase mutations did not reduce the exposure of PS in either case, even at low levels that would only be detectable by quantitative analysis of mRFP-Lact-C2 fluorescence in isolated SVs. Furthermore, no reduction in the PS level was observed in a mutant with multiple flippase mutations. Because PS was not exposed in a mutant that accumulates ER or cis/medial-Golgi membranes, Golgi maturation seems to be a prerequisite for PS translocation. Our results suggest that an unknown mechanism, possibly a protein with flippase-like activity, acts in conjunction with known flippases to regulate PS translocation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234269 | PMC |
http://dx.doi.org/10.1002/mbo3.211 | DOI Listing |
Sci Adv
January 2025
Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Methods Mol Biol
December 2024
Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
Phospholipid flippases in the P4-ATPase family are essential for establishing membrane asymmetry. These ATP-powered pumps translocate specific lipids from the exofacial leaflet to the cytosolic leaflet of the plasma membrane, thereby concentrating substrate lipids, such as phosphatidylserine, in the cytosolic leaflet while non-substrate lipids populate the exofacial leaflet. Here, we describe a method for measuring P4-ATPase transport activity in the yeast plasma membrane by using flow cytometry to quantify the uptake of lipids derivatized with a fluorescent [7-nitro-2-1,3-benzoxadiazol-4-yl)amino] (NBD) group on a short (C6) fatty acyl chain.
View Article and Find Full Text PDFBrain Behav Immun
December 2024
Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China. Electronic address:
Prenatal virus infection-induced maternal immune activation (MIA) is linked to a greater risk of neurodevelopmental disorders in offspring. Prenatal exposure to poly(I:C) in pregnant mice is a well-established approach to mimic virus infection-induced MIA, leading to neuropsychiatric disorders and aberrant brain development, especially in the medial prefrontal cortex (mPFC). ATPase phospholipid flippase 8A2 (ATP8A2) is the main phospholipid lipase, expressed in the mPFC and is crucial for maintaining cell membrane stability by flipping phosphatidylserine from the outer leaflet to the inner leaflet of the cell membrane.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:
ATP8A2 is a P4-ATPase that actively flips phosphatidylserine and to a lesser extent phosphatidylethanolamine across cell membranes to generate and maintain transmembrane phospholipid asymmetry. The importance of this flippase is evident in the finding that loss-of-function mutations in ATP8A2 are known to cause the neurodevelopmental disease known as cerebellar ataxia, intellectual disability, and dysequilibrium syndrome 4 (CAMRQ4) in humans and related neurodegenerative disorders in mice. Although significant progress has been made in understanding mechanisms underlying phospholipid binding and transport across the membrane domain, little is known about the structural and functional properties of the cytosolic N- and C-terminal segments of this flippase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!