Background: Trans-translation is catalyzed by ribonucleprotein complexes composed of SmpB protein and transfer-messenger RNA. They release stalled ribosomes from truncated mRNAs and tag defective proteins for proteolytic degradation. Comparative sequence analysis of bacterial tmRNAs provides considerable insights into their secondary structures in which a tRNA-like domain and an mRNA-like region are connected by a variable number of pseudoknots. Progress toward understanding the molecular mechanism of trans-translation is hampered by our limited knowledge about the structure of tmRNA:SmpB complexes.
Results: Complexes consisting of M. tuberculosis tmRNA and E. coli SmpB tag truncated proteins poorly in E. coli. In contrast, the tagging activity of E. coli tmRNA is well supported by M. tuberculosis SmpB that is expressed in E. coli. To investigate this incompatibility, we constructed 12 chimeric tmRNA molecules composed of structural features derived from both E. coli and M. tuberculosis. Our studies demonstrate that replacing the hp5-pk2-pk3-pk4 segment of E. coli tmRNA with the equivalent segment of M. tuberculosis tmRNA has no significant effect on the tagging efficiency of chimeric tmRNAs in the presence of E. coli SmpB. Replacing either helices 2b-2d, the single-stranded part of the ORF, pk1, or residues 79-89 of E. coli tmRNA with the equivalent features of M. tuberculosis tmRNA yields chimeric tmRNAs that are tagged at 68 to 88 percent of what is observed with E. coli tmRNA. Exchanging segments composed of either pk1 and the single-stranded segment upstream of the ORF or helices 2b-2d and pk1 results in markedly impaired tagging activity.
Conclusion: Our observations demonstrate the existence of functionally important but as yet uncharacterized structural constraints in the segment of tmRNA that connects its TLD to the ORF used for resuming translation. As trans-translation is important for the survival of M. tuberculosis, our work provides a new target for pharmacological intervention against multidrug-resistant tuberculosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236655 | PMC |
http://dx.doi.org/10.1186/1471-2199-15-19 | DOI Listing |
NPJ Antimicrob Resist
September 2024
Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan.
Escherichia coli possesses three stalled-ribosome rescue factors, tmRNA·SmpB (primary factor), ArfA (alternative factor to tmRNA·SmpB), and ArfB. Here, we examined the susceptibility of rescue factor-deficient strains from E. coli SE15 to various ribosome-targeting antibiotics.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
Clustered regularly-interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins protect bacteria and archaea from their viruses, and anti-CRISPRs (Acrs) are small virus-encoded proteins that inhibit CRISPR-Cas immunity. Over 80 families of Acrs have been described to date; however, only three of these subvert Type III CRISPR-Cas immunity. Type III systems employ a complex network of Cas and accessory nucleases to degrade viral nucleic acids.
View Article and Find Full Text PDFFront Microbiol
March 2024
RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, United States.
Ribosomes stall on truncated or otherwise damaged mRNAs. Bacteria rely on ribosome rescue mechanisms to replenish the pool of ribosomes available for translation. Trans-translation, the main ribosome-rescue pathway, uses a circular hybrid transfer-messenger RNA (tmRNA) to restart translation and label the resulting peptide for degradation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2024
Division of Biology and Biomedical Systems, School of Science and Engineering, 306 Spencer Hall, University of Missouri-Kansas City, 5007 Rockhill Rd., Kansas City, MO, 64110, USA. Electronic address:
The pseudouridine (ψ) synthase, RluD is responsible for three ψ modifications in the helix 69 (H69) of bacterial 23S rRNA. While normally dispensable, rluD becomes critical for rapid cell growth in bacteria that are defective in translation-termination. In slow-growing rluD bacteria, suppressors affecting termination factors RF2 and RF3 arise frequently and restore normal termination and rapid cell growth.
View Article and Find Full Text PDFMethods Mol Biol
January 2024
Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
Regulatory RNAs, as well as many RNA families, contain chemically modified nucleotides, including pseudouridines (ψ). To map nucleotide modifications, approaches based on enzymatic digestion of RNA followed by nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis were implemented several years ago. However, detection of ψ by mass spectrometry (MS) is challenging as ψ exhibits the same mass as uridine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!