Arp2/3 complex regulates adipogenesis by controlling cortical actin remodelling.

Biochem J

║National Creative Research Initiatives Center for Adipose Tissue Remodeling, Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea.

Published: December 2014

Extensive actin cytoskeleton remodelling occurs during adipocyte development. We have previously shown that disruption of stress fibres by the actin-severing protein cofilin is a requisite step in adipogenesis. However, it remains unclear whether actin nucleation and assembly into the cortical structure are essential for adipocyte development. In the present study we investigated the role of cortical actin assembly and of actin nucleation by the actin-related protein 2/3 (Arp2/3) complex in adipogenesis. Cortical actin structure formation started with accumulation of filamentous actin (F-actin) patches near the plasma membrane during adipogenesis. Depletion of Arp2/3 by knockdown of its subunits Arp3 or ARPC3 strongly impaired adipocyte differentiation, although adipogenesis-initiating factors were unaffected. Moreover, the assembly of F-actin-rich structures at the plasma membrane was suppressed and the cortical actin structure poorly developed after adipogenic induction in Arp2/3-deficient cells. Finally, we provide evidence that the cortical actin cytoskeleton is essential for efficient glucose transporter 4 (GLUT4) vesicle exocytosis and insulin signal transduction. These results show that the Arp2/3 complex is an essential regulator of adipocyte development through control of the formation of cortical actin structures, which may facilitate nutrient uptake and signalling events.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20140805DOI Listing

Publication Analysis

Top Keywords

cortical actin
24
arp2/3 complex
12
adipocyte development
12
actin
10
actin cytoskeleton
8
actin nucleation
8
actin structure
8
plasma membrane
8
cortical
7
arp2/3
4

Similar Publications

Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Roles for the canonical polarity machinery in the establishment of polarity in budding yeast spores.

Mol Biol Cell

January 2025

Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.

The yeast buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!