Purpose: Patients suffering from chronic kidney disease (CKD) exhibit a high incidence of cancer, as well as high levels of genetic damage. We hypothesized that these patients show genomic instability detected as an increased chromosomal radiosensitivity in front of the genetic damage induced by ionizing radiation.
Material And Methods: The background levels of genetic damage and the net genetic damage after in vitro irradiation with 0.5 Gy were analyzed using the micronucleus (MN) assay in peripheral blood lymphocytes. A total number of 552 individuals (179 controls and 373 CKD patients) were included in the study.
Results: The net radiation-induced genetic damage was significantly higher in CKD patients than in controls; but no differences between those patients submitted to hemodialysis and those in pre-dialytic stages were detected. A positive correlation was observed between basal and net micronucleus frequencies in CKD patients what would indicate an underlying genetic background modulating DNA damage levels.
Conclusions: Our results indicate that CKD patients present genomic instability, measured as an increased chromosomal radiosensitivity in front of ionizing radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09553002.2015.959670 | DOI Listing |
Curr Hypertens Rep
January 2025
Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China.
Purpose Of Review: To review currently existing knowledge on a new type of antihypertensive treatment, small interfering RNA (siRNA) targeting hepatic angiotensinogen.
Recent Findings: Targeting angiotensinogen synthesis in the liver with siRNA allows reaching a suppression of renin-angiotensin system (RAS) activity for up to 6 months after 1 injection. This might revolutionize antihypertensive treatment, as it could overcome non-adherence, the major reason for inadequate blood pressure control.
Cell Biol Toxicol
January 2025
Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.
View Article and Find Full Text PDFPhysiol Res
December 2024
Department of Pathophysiology, The Second Faculty of Medicine, Charles University, Prague, Czech Republic, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
Combination of chronic kidney disease (CKD) and heart failure (HF) results in extremely high morbidity and mortality. The current guideline-directed medical therapy is rarely effective and new therapeutic approaches are urgently needed. The study was designed to examine if renal denervation (RDN) will exhibit long-standing beneficial effects on the HF- and CKD-related morbidity and mortality.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.
Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.
Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).
Skelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!