Unlabelled: Formalin-fixed paraffin-embedded (FFPE) specimens of patients are useful sources of materials for clinical research and have recently gained interest for use in the discovery of clinical proteomic biomarkers. However, the critical step in this field is the ability to obtain an efficient and repeatable extraction using the limited quantities of material available for research in hospital biobanks. This work describes the evaluation of the peptide/protein extraction using FFPE sections treated by the following two methods before shotgun proteomic analysis: a commercial solution (FFPE-FASP) (filter aided sample preparation) and an antigen retrieval-derived protocol (On Slice AR). Their efficiencies and repeatabilities are compared using data-independent differential quantitative label-free analysis. FFPE-FASP was shown to be globally better both qualitatively and quantitatively than On Slice AR. FFPE-FASP was tested on several samples, and differential analysis was used to compare the tissues of diverticulitis patients (healthy and inflammatory tissues). In this differential proteomic analysis using retrospective clinical FFPE material, FFPE-FASP was reproducible and provided a high number of confident protein identifications, highlighting potential protein biomarkers.
Biological Significance: In clinical proteomics, FFPE is an important resource for retrospective analysis and for the discovery of biomarkers. The challenge for FFPE shotgun proteomic analysis is preparation by an efficient and reproducible protocol, which includes protein extraction and digestion. In this study, we analyzed two different methods and evaluated their repeatabilities and efficiencies. We illustrated the reproducibility of the most efficient method, FFPE-FASP, by a pilot study on diverticulitis tissue and on FFPE samples amount accessible in hospital biobanks. These data showed that FFPE is suitable for use in clinical proteomics, especially when the FFPE-FASP method is combined with label-free shotgun proteomics as described in the workflow presented in this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2014.08.013 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
Introduction: The traditional Chinese medicine formula, Bushen Daozhuo Granules (BSDZG), is used to treat chronic non-bacterial prostatitis (CNP) clinically. However, its mechanism of action is unclear. The aim of our study was to determine the effect of BSDZG on CNP and its underlying mechanisms.
View Article and Find Full Text PDFCurr Cardiol Rev
January 2025
Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.
Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.
View Article and Find Full Text PDFiScience
January 2025
Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
Cancers and neurodegenerative disorders are associated with both disrupted proteostasis and altered nuclear morphology. Determining if changes in nuclear morphology contribute to pathology requires an understanding of the underlying mechanisms, which are difficult to elucidate in cells where pleiotropic effects of altering proteostasis might indirectly influence nuclear morphology. To investigate direct effects, we studied nuclei assembled in egg extract where potentially confounding effects of transcription, translation, cell cycle progression, and actin dynamics are absent.
View Article and Find Full Text PDFBioact Mater
April 2025
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal.
Cell sheet (CS)-based approaches hold significant potential for tissue regeneration, relying on the extracellular matrix (ECM) for success. Like in native tissues, the ECM provides structural and biochemical support for cellular homeostasis and function. Effective preservation strategies that maintain ECM integrity are critical to enhance the therapeutic potential of CS-based approaches.
View Article and Find Full Text PDFBioact Mater
April 2025
Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
The aberrant activation of the canonical Wnt/β-catenin signaling has been identified as a significant contributor to the pathogenesis of osteoarthritis (OA), exacerbating OA symptoms and driving OA progression. Despite its potential as a therapeutic target, clinical translation is impeded by the lack of a targeting delivery system and effective drug candidate that can modulate steady-state protein levels of β-catenin at post-translational level. Our study addresses these challenges by offering a new approach for OA treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!