A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-content imaging and gene expression analysis to study cell-nanomaterial interactions: the effect of surface hydrophobicity. | LitMetric

High-content imaging and gene expression analysis to study cell-nanomaterial interactions: the effect of surface hydrophobicity.

Biomaterials

MoSAIC/Biomedical NMR Unit, Department of Medicine, Catholic University of Leuven, B3000 Leuven, Belgium; Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium. Electronic address:

Published: December 2014

The effects of nanoparticle (NP)-related parameters on cellular interactions are currently uncertain as analysis is complicated by the combinatorial diversity arising from the array of size, shape and surface properties. Here, we present a validated multiparametric high-content imaging method, with the utility of this approach demonstrated by in-depth analysis of the role of hydrophobicity on the interaction of Au NPs with cultured cells. In this methodology, we evaluate cell viability, membrane damage, induction of reactive oxygen species, mitochondrial health, cell area, skewness and induction of autophagy. High-content cell cycle phase studies and in-depth gene expression studies then serve to elucidate the underlying mechanisms. The data reveal a clear influence of the degree of NP surface hydrophobicity with membrane damage and autophagy induction, which is stronger than the effect of surface charge, for charges ranging between -50 and +20 mV. All labeling experiments occur in the same format, and can be further supplemented with additional parameters providing a broadly accessible format for studying cell-NP interactions under highly reproducible conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2014.08.031DOI Listing

Publication Analysis

Top Keywords

high-content imaging
8
gene expression
8
surface hydrophobicity
8
membrane damage
8
imaging gene
4
expression analysis
4
analysis study
4
study cell-nanomaterial
4
cell-nanomaterial interactions
4
surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!