We explore the collision dynamics of complex hydrocarbon molecules (benzene, coronene, adamantane, and anthracene) containing carbon rings in a cold buffer gas of (3)He. For benzene, we present a comparative analysis of the fully classical and fully quantum calculations of elastic and inelastic scattering cross sections at collision energies between 1 and 10 cm(-1). The quantum calculations are performed using the time-independent coupled channel approach and the coupled-states approximation. We show that the coupled-states approximation is accurate at collision energies between 1 and 20 cm(-1). For the classical dynamics calculations, we develop an approach exploiting the rigidity of the carbon rings and including low-energy vibrational modes without holonomic constraints. Our results illustrate the effect of the molecular shape and the vibrational degrees of freedom on the formation of long-lived resonance states that lead to low-temperature clustering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4894793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!