Heparan sulfate differences in rheumatoid arthritis versus healthy sera.

Matrix Biol

Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA.

Published: November 2014

Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407649PMC
http://dx.doi.org/10.1016/j.matbio.2014.08.016DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
8
rheumatoid arthritis
8
human serum
8
sulfate differences
4
differences rheumatoid
4
arthritis versus
4
versus healthy
4
healthy sera
4
sera heparan
4
sulfate complex
4

Similar Publications

Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake.

View Article and Find Full Text PDF

Damage to glycocalyx and tight junction are key determinants of endothelial permeability, which is the main pathological feature of acute respiratory distress syndrome (ARDS). However, the effect of glycocalyx heparan sulfate (HS) on tight junction proteins occludin and ZO-1 has not been revealed. In this study, the mice exposed to LPS results showed that FITC-albumin infiltration, HS shedding, and tight junction protein impairment were most severe at 6 h of LPS treatment compared with those in other treatment times.

View Article and Find Full Text PDF

Advances in the Pathogenesis of Hereditary Angioedema.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Allergy, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Hereditary angioedema (HAE) is a rare,unpredictable,autosomal dominant disorder characterized by recurrent swelling in subcutaneous and submucosal tissue.In recent years,the pathophysiology and pathogenesis of HAE have been continuously studied and elucidated.In addition to the genes encoding complement 1 esterase inhibitors,new pathogenic variants have been identified in the genes encoding coagulation factor Ⅻ,plasminogen,angiopoietin-1,kininogen,heparan sulfate 3-O-sulfotransferase 6,and myoferlin in HAE.

View Article and Find Full Text PDF

Heparanase 2 Modulation Inhibits HSV-2 Replication by Regulating Heparan Sulfate.

Viruses

November 2024

Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.

The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how extracellular histone H4 contributes to acute respiratory distress syndrome (ARDS) triggered by oleic acid (OA) in mice.
  • The research found that levels of histone H4 increased significantly after OA injection, correlating with the severity of ARDS, and that pre-treatment with histone H4 worsened lung edema and mortality.
  • Histone H4 activated endothelial cells through mechanisms involving heparan sulfate degradation and certain receptors, leading to inflammation and thrombus formation in the lungs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!