Aim: Urinary type IV collagen is an early biomarker of diabetic nephropathy. Concomitant prediabetes (the early stage of diabetes) was associated with left ventricular (LV) diastolic dysfunction and increased brain natriuretic peptide (BNP) in hypertensive patients. We hypothesized that urinary type IV collagen may be related to these cardiac dysfunctions.

Methods: We studied hypertensive patients with early prediabetes (HbA1c <5.7% and fasting glucose >110, n=18), those with prediabetes (HbA1c 5.7-6.4, n=98), and those with diabetes (HbA1c>6.5 or on diabetes medications, n=92). The participants underwent echocardiography to assess left atrial volume/body surface area (BSA) and the ratio of early mitral flow velocity to mitral annular velocity (E/e'). Left ventricular diastolic dysfunction (LVDD) was defined if patients had E/e'≥15, or E/e'=9-14 accompanied by left atrial volume/BSA≥32ml/mm(2). Urinary samples were collected for type IV collagen and albumin, and blood samples were taken for BNP and HbA1c.

Results: Urinary type IV collagen and albumin increased in parallel with the deterioration of glycemic status. In hypertensive patients with prediabetes, subjects with LVDD had higher levels of BNP and urinary type IV collagen than those without LVDD. In contrast, in hypertensive patients with diabetes, subjects with LVDD had higher urinary albumin and BNP than those without LVDD. Urinary type IV collagen correlated positively with BNP in hypertensive patients with prediabetes, whereas it correlated with HbA1c in those with diabetes.

Conclusions: In hypertensive patients with prediabetes, urinary type IV collagen was associated with LV diastolic dysfunction and BNP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdiacomp.2014.08.005DOI Listing

Publication Analysis

Top Keywords

type collagen
32
urinary type
28
hypertensive patients
28
patients prediabetes
16
left ventricular
12
ventricular diastolic
12
diastolic dysfunction
12
urinary
9
collagen
8
brain natriuretic
8

Similar Publications

Metastasis continues to pose a significant challenge in tumor treatment. Evidence indicates that choline dehydrogenase (CHDH) is crucial in tumorigenesis. However, the functional role of CHDH in colorectal cancer (CRC) metastasis remains unreported.

View Article and Find Full Text PDF

Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention.

Front Pharmacol

December 2024

Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF

Although current treatments for Duchenne Muscular Dystrophy (DMD) have proven to be effective in delaying myopathy, there remains a strong need to identify novel targets to develop additional therapies. Mitochondrial dysfunction is an early pathological feature of DMD. A fine balance of mitochondrial dynamics (fission and fusion) is crucial to maintain mitochondrial function and skeletal muscle health.

View Article and Find Full Text PDF

Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.

Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.

View Article and Find Full Text PDF

Mussel byssi form a robust underwater adhesive system, anchoring to various surfaces in harsh marine environments. Central to byssus is foot protein type 4 (fp-4), a junction protein connecting collagenous threads to proteinaceous plaque. This study investigated an anionic plaque-binding domain of fp-4 (fp-4a) and its interactions with cationic foot proteins (fp-1, fp-5, and fp-151 as model substitutes for fp-2) and metal ions (Ca, Fe, and V).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!