Epigenetic control of dendritic cell development and fate determination of common myeloid progenitor by Mysm1.

Blood

Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA.

Published: October 2014

The mechanisms controlling the development of dendritic cells (DCs) remain incompletely understood. Using an Mysm1 knockout (Mysm1(-/-)) mouse model, we identified the histone H2A deubiquitinase Mysm1, as a critical regulator in DC differentiation. Mysm1(-/-) mice showed a global reduction of DCs in lymphoid organs, whereas development of granulocytes and macrophages were not severely affected. Hematopoietic progenitors and DC precursors were significantly decreased in Mysm1(-/-) mice and defective in Fms-like tyrosine kinase-3(Flt3) ligand-induced, but not in granulocyte macrophage-colony-stimulating factor (GM-CSF)-induced DC differentiation in vitro. Molecular studies demonstrated that the developmental defect of DCs from common myeloid progenitor (CMP) in Mysm1(-/-) mice is associated with decreased Flt3 expression and that Mysm1 derepresses transcription of the Flt3 gene by directing histone modifications at the Flt3 promoter region. Two molecular mechanisms were found to be responsible for the selective role of Mysm1 in lineage determination of DCs from CMPs: the selective expression of Mysm1 in a subset of CMPs and the different requirement of Mysm1 for PU.1 recruitment to the Flt3 locus vs GM-CSF-α and macrophage-colony-stimulating factor receptor loci. In conclusion, this study reveals an essential role of Mysm1 in epigenetic regulation of Flt3 transcription and DC development, and it provides a novel mechanism for lineage determination from CMP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208280PMC
http://dx.doi.org/10.1182/blood-2013-10-534313DOI Listing

Publication Analysis

Top Keywords

mysm1-/- mice
12
common myeloid
8
myeloid progenitor
8
mysm1
8
macrophage-colony-stimulating factor
8
expression mysm1
8
role mysm1
8
lineage determination
8
flt3
5
epigenetic control
4

Similar Publications

Osteoarthritis (OA), the most prevalent degenerative joint disease, is marked by cartilage degradation and pathological alterations in surrounding tissues. Currently, no effective disease-modifying treatments exist. This study aimed to elucidate the critical roles of Myb-like, SWIRM, and MPN domains 1 (MYSM1) and its downstream effector, Receptor-interacting protein kinase 2 (RIPK2), in OA pathogenesis and the underlying mechanisms.

View Article and Find Full Text PDF

Anthracycline antitumor drug doxorubicin (DOX) induces severe cardiotoxicity. Deubiquitinating enzymes (DUBs) are crucial for protein stability and function and play a significant role in cardiac pathophysiology. By comparing RNA sequencing datasets and conducting functional screening, we determined that Myb-like, SWIRM, and MPN domains 1 (MYSM1) is a key regulator of DOX-induced cardiotoxicity.

View Article and Find Full Text PDF

MYSM1, a deubiquitinating enzyme, plays a pivotal role in diverse biological processes. Both MYSM1 knockout mice and patients with Mysm1 gene mutations exhibit developmental abnormalities across multiple tissues and organs. Serving as a crucial regulator, MYSM1 influences stem cell function, immune responses, and the pathogenesis of diverse diseases.

View Article and Find Full Text PDF

Polycomb group proteins (PcGs) add repressive post translational histone modifications such as H2AK119ub1, and histone H2A deubiquitinases remove it. Mice lacking histone H2A deubiquitinases such as Usp16 and Bap1 die in embryonic stage, while mice lacking Usp3, Mysm1, Usp12, and Usp21 have been shown to be deficient in hematopoietic lineage differentiation, cell cycle regulation, and DNA repair. Thus, it is likely that histone deubiquitinases may also be required for human endothelial cell differentiation; however, there are no reports about the role of histone H2A deubiquitinase BAP1 in human endothelial cell development.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are critical for brain development and maintenance of neurogenesis. However, the molecular mechanisms that regulate NSC proliferation and differentiation remain unclear. Mysm1 is a deubiquitinase and is essential for the self-renewal and differentiation of several stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!