Detection of orthotopic xenograft tumors is difficult due to poor spatial resolution and reduced image fidelity with traditional optical imaging modalities. In particular, light scattering and attenuation in tissue at depths beyond subcutaneous implantation hinder adequate visualization. We evaluate the use of multispectral optoacoustic tomography (MSOT) to detect upregulated epidermal growth factor (EGF) receptor in orthotopic pancreatic xenografts using a near-infrared EGF-conjugated CF-750 fluorescent probe. MSOT is based on the photoacoustic effect and thus not limited by photon scattering, resulting in high-resolution tomographic images. Pancreatic tumor-bearing mice with luciferase-transduced S2VP10L tumors were intravenously injected with EGF-750 probe before MSOT imaging. We characterized probe specificity and bioactivity via immunoblotting, immunocytochemistry, and flow cytometric analysis. In vitro data along with optical bioluminescence/fluorescence imaging were used to validate acquired MSOT in vivo images of probe biodistribution. Indocyanine green dye was used as a nonspecific control to define specificity of EGF-probe accumulation. Maximum accumulation occurred at 6 hours postinjection, demonstrating specific intratumoral probe uptake and minimal liver and kidney off-target accumulation. Optical bioluminescence and fluorescence imaging confirmed tumor-specific probe accumulation consistent with MSOT images. These studies demonstrate the utility of MSOT to obtain volumetric images of ligand probe biodistribution in vivo to detect orthotopic pancreatic tumor lesions through active targeting of the EGF receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216771PMC
http://dx.doi.org/10.1158/0008-5472.CAN-14-1656DOI Listing

Publication Analysis

Top Keywords

orthotopic pancreatic
12
multispectral optoacoustic
8
optoacoustic tomography
8
egf receptor
8
probe msot
8
probe biodistribution
8
probe
7
msot
6
imaging
5
targeted noninvasive
4

Similar Publications

: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy.

View Article and Find Full Text PDF

Identification of cold tumor induction-related markers in pancreatic cancer and the clinical implication of PCDH7.

J Cancer Res Clin Oncol

January 2025

Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Purpose: Pancreatic ductal adenocarcinoma (PDAC) is considered a "cold" tumor because the tumor immune microenvironment (TIME) exhibits poor intratumoral T-cell infiltration. This study aimed to identify the marker genes associated with induction of cold TIME in PDAC cells.

Methods: We orthotopically transplanted 10 primary cultures of PDAC derived from KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) mice into immunocompetent mice and evaluated TIME by immunohistochemistry (IHC) staining of CD8.

View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS), defined by the presence of pulmonary vascular dilatations that cause right-to-left transpulmonary shunting of venous blood with a consequential increase in the alveolar-arterial oxygen gradient, is a relatively frequent complication of chronic liver disease. While orthotopic liver transplantation (OLT) is indicated and often curative in HPS patients with end-stage liver disease (ESLD), little is known about the peri- and post-operative-period risks of CVA in OLT recipients with HPS. : We report a case series of five non-consecutive OLT recipients with HPS who developed ischemic and/or hemorrhagic CVAs during or shortly after OLT, raising concern that the risks of neurological complications remain increased even after OLT.

View Article and Find Full Text PDF

Vitamin K-dependent gamma-carboxyglutamic acid protein 1 promotes pancreatic ductal adenocarcinoma progression through stabilizing oncoprotein KRAS and tyrosine kinase receptor EGFR.

Clin Transl Med

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.

Background: Vitamin K-dependent γ-glutamic acid carboxylation (Gla) proteins are calcium-binding and membrane-associated, participating in coagulation, bone turnover, and cancer biology. The molecular function of transmembrane proline-rich Gla proteins (PRRGs) remains unexplored.

Methods: Analysis of pancreatic ductal adenocarcinoma (PDAC) datasets, including transcription profiles, clinical data, and tissue microarrays, was conducted to evaluate PRRG1 expression and its clinical relevance.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) exhibiting high stiffness and fast stress relaxation. In this work, gelatin-based viscoelastic hydrogels were developed to mimic the compositions, stiffness, and fast stress relaxation of PDAC tissues. The hydrogels were cross-linked by gelatin-norbornene-boronic acid (GelNB-BA), thiolated macromers, and a 1,2-diol-containing linear synthetic polymer PHD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!