Plants of different ploidy levels are separated by a strong postzygotic hybridization barrier that is established in the endosperm. Deregulated parent-of-origin specific genes cause the response to interploidy hybridizations, revealing an epigenetic basis of this phenomenon. In this study, we present evidence that paternal hypomethylation can bypass the interploidy hybridization barrier by alleviating the requirement for the Polycomb Repressive Complex 2 (PRC2) in the endosperm. PRC2 epigenetically regulates gene expression by applying methylation marks on histone H3. Bypass of the barrier is mediated by suppressed expression of imprinted genes. We show that the hypomethylated pollen genome causes de novo CHG methylation directed to FIS-PRC2 target genes, suggesting that different epigenetic modifications can functionally substitute for each other. Our work presents a method for the generation of viable triploids, providing an impressive example of the potential of epigenome manipulations for plant breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213165PMC
http://dx.doi.org/10.1105/tpc.114.130120DOI Listing

Publication Analysis

Top Keywords

hybridization barrier
12
hypomethylated pollen
8
interploidy hybridization
8
pollen bypasses
4
bypasses interploidy
4
barrier
4
barrier arabidopsis
4
arabidopsis plants
4
plants ploidy
4
ploidy levels
4

Similar Publications

Thrips palmi Karny (Thysanoptera: Thripidae), an impactful pest in Southeast and East Asia, spread to Africa, Oceania, and the Americas in the past decades. Besides being a principal pest of vegetables, legumes, fibre, and ornamental crops, T. palmi serves as the vector for several plant viruses that cause substantial economic losses.

View Article and Find Full Text PDF

Chemical signals and social structures strengthen sexual isolation in Drosophila pseudoobscura.

Commun Biol

January 2025

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.

Species that coexist in hybrid zones sexually isolate through reproductive character displacement, a mechanism that favours divergence between species. In Drosophila, behavioural and physiological traits discourage heterospecific mating between species. Recently, social network analysis revealed flies produce strain-specific and species-specific social structures.

View Article and Find Full Text PDF

Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback () is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males.

View Article and Find Full Text PDF

The advancement of small ruminant farming in Benin has encountered challenges associated with health issues and agricultural practices. This study aimed to provide the initial documentation of the prevalence of enzootic ovine abortion and evaluate the health status of animals concerning various recurring diseases on traditional small ruminant farms in Benin. In 2023, a semi-structured survey of 450 farms was carried out in two agricultural development centers in Benin.

View Article and Find Full Text PDF

Ensuring species integrity and successful reproduction is pivotal for the survival of angiosperms. Members of Brassicaceae family employ a "lock and key" mechanism involving stigmatic (sRALFs) and pollen RALFs (pRALFs) binding to FERONIA, a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) receptor, to establish a prezygotic hybridization barrier. In the absence of compatible pRALFs, sRALFs bind to FERONIA, inducing a lock state for pollen tube penetration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!