Background: Lysyl oxidase-like 4 (LOXL4) has been found up-regulated in a variety of human malignancies, but its clinical significance and functional roles in gastric cancer (GC) remain unknown.
Methods: Lysyl oxidase-like 4 (LOXL4) expression level in tumor tissues and human GC cell lines was evaluated by quantitative real-time polymerase chain reaction, Western blotting and immunohistochemical analyses. Its clinical significance was inferred from the analysis of 379 tissue samples of patients with GC using tissue microarray. The roles of LOXL4 in cell proliferation, migration and invasion in vitro were analyzed by gene over-expression, RNA interference and recombinant protein. Effects of LOXL4 on regulation of focal adhesion kinase/Src kinase (FAK/Src) pathway were examined by Western blotting.
Results: Lysyl oxidase-like 4 (LOXL4) was up-regulated in GC tissues relative to paired non-tumor tissues, and this over-expression was significantly associated with tumor size, depth of tumor invasion, lymph node metastasis, tumor-node-metastasis (TNM) stages and poorer overall survival. Over-expression of LOXL4 has promotive effects on GC cell proliferation, migration and invasion in vitro, consistent with this, LOXL4 knockdown has inhibitive effects on GC cell proliferation, migration and invasion. Furthermore, recombinant human LOXL4 protein also promoted GC cell proliferation and migration. Subsequent mechanistic studies showed that LOXL4 could activate FAK/Src pathway to enhance cell-extracellular matrix adhesion.
Conclusions: Taken together, our data reveal that up-regulation of LOXL4 expression is a frequent event in GC progression, contributes to tumor cell proliferation and metastasis, and LOXL4 may be a potential independent prognostic marker and therapeutic target for GC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-014-1823-z | DOI Listing |
Int J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFJ Neurochem
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Cerebral ischemia-reperfusion injury (CIRI) constitutes a significant etiology of exacerbated cerebral tissue damage subsequent to intravenous thrombolysis and endovascular mechanical thrombectomy in patients diagnosed with acute ischemic stroke. The treatment of CIRI has been extensively investigated through a multitude of clinical studies. Acupuncture has been demonstrated to be effective in treating CIRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!