A reconstruction methodology based on threshold energy based energy minimization (TA) and different-phase-neighbor (DPN)-based pixel swapping is presented. The TA method uses an energy threshold rather than probabilities as an acceptance criteria for annealing steps. The DPN-based pixel selection method gives priority to pixels which are segregated from clusters instead of random selection. An in-house solver has been developed to obtain two-dimensional reconstructions of heterogeneous two-phase mediums. Compared to conventional simulated annealing with random pixel swapping, the proposed method was found to achieve an optimal structure with up to an order of magnitude reduction in energy. When selecting a threshold tolerance value, the proposed method showed a 50% improvement in convergence time compared to conventional simulated annealing with random pixel swapping. The improved algorithm is used to study the effect of multiple correlation functions during the reconstruction. It was found that a combination of two-point correlation function and lineal path function for both phases results in most accurate reconstructions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.90.023306 | DOI Listing |
Invest Radiol
December 2024
From the Department of Radiology, Boston Children's Hospital, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.); and Harvard Medical School, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.).
Objectives: The T1-weighted GRE (gradient recalled echo) sequence with the Dixon technique for water/fat separation is an essential component of abdominal MRI (magnetic resonance imaging), useful in detecting tumors and characterizing hemorrhage/fat content. Unfortunately, the current implementation of this sequence suffers from several problems: (1) low resolution to maintain high pixel bandwidth and minimize chemical shift; (2) image blurring due to respiratory motion; (3) water/fat swapping due to the natural ambiguity between fat and water peaks; and (4) off-resonance fat blurring due to the multipeak nature of the fat spectrum. The goal of this study was to evaluate the image quality of water/fat separation using a high-resolution 3-point Dixon golden angle radial acquisition with retrospective motion compensation and multipeak fat modeling in children undergoing abdominal MRI.
View Article and Find Full Text PDFPerformance degradation due to distribution discrepancy is a longstanding challenge in intelligent imaging, particularly for chest X-rays (CXRs). Recent studies have demonstrated that CNNs are biased toward styles (e.g.
View Article and Find Full Text PDFEntropy (Basel)
March 2023
School of Computing and Mathematical Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK.
Reversible data hiding (RDH), a promising data-hiding technique, is widely examined in domains such as medical image transmission, satellite image transmission, crime investigation, cloud computing, etc. None of the existing RDH schemes addresses a solution from a real-time aspect. A good compromise between the information embedding rate and computational time makes the scheme suitable for real-time applications.
View Article and Find Full Text PDFNanophotonics
February 2023
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
Sensors (Basel)
October 2022
Department of R&D, Bond Marine Consultancy, London EC1V 2NX, UK.
Social networks have greatly expanded in the last ten years the need for sharing multimedia data. However, on open networks such as the Internet, where security is frequently compromised, it is simple for eavesdroppers to approach the actual contents without much difficulty. Researchers have created a variety of encryption methods to strengthen the security of this transmission and make it difficult for eavesdroppers to get genuine data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!