PG are known to inhibit T cell proliferation, at least in part by suppressing IL-2 production, but effects of PG on the production of other lymphokines have not been well studied. We have found that PGE2 and PGE1, but not PGF2 alpha, inhibit both proliferation and production of granulocyte-macrophage (GM)-CSF by murine TH clones stimulated with Ag or anti-CD3 antibody. Thus, signals generated via the Ag receptor:CD3 complex were inhibited by PGE. Most interesting, however, was the finding that PGE2 and PGE1 could act synergistically with IL-2 for the induction of GM-CSF in some TH1 clones. Dependence on PGE2 for this response was not found in all clones, as some TH1 cells could produce GM-CSF after IL-2 alone, and some cells did not produce GM-CSF even in the presence of PGE2 and IL-2. These observations indicate that there is a subset of TH1 cells receptive to a stimulating activity of PGE2 in the presence of IL-2. PGE2 is known to elevate cAMP levels in T cells. Therefore, we tested whether other agents known to increase cAMP, such as forskolin and cholera toxin, could act in conjunction with IL-2 to induce GM-CSF secretion. As was found with PGE2, these compounds also induced GM-CSF activity in the presence of IL-2, suggesting a critical role for cAMP in this process. Overall these data indicate that the requirements for activation of GM-CSF secretion vary among individual T cells. Most importantly they provide the first evidence that E-series PG are positive signals for lymphokine induction in certain T cells, whereas simultaneously acting as negative signals limiting proliferation. This result also suggests that treatment with anti-inflammatory drugs that decrease PGE2 concentrations may inhibit lymphokine secretion normally stimulated by this pathway.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!