Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Endotracheal tubes are frequently used to establish alternate airways. Precise placement of the tubes must be maintained to prevent serious complications. Several methods for fixation of endotracheal tubes are available. Available methods vary widely in form and functionality. Due to the unpredictable and dynamic nature of circumstances surrounding intubation, thorough evaluation of tube restraints may help reduce airway accidents such as tube dislodgement and unplanned extubation.
Methods: Seven different tube-restraint combinations were compared against themselves and one another at a series of discrete angles (test points) covering a hemisphere on the plane of the face. Force values for tube motion of 2 cm and 5 cm (or failure) were recorded for 3 pull tests, at each angle, for each method of tube fixation.
Results: All methods showed variation in the force required for tube motion with angle of force application. When forces were averaged over all test points, for each fixation technique, differences as large as 132 N (30 lbf) were observed (95% CI 113 N to 152 N). Compared to traditional methods of fixation, only 1 of the 3 commercially available devices consistently required a higher average force to displace the tube 2 cm and 5 cm. When ranges of force values for 5 cm displacement were compared, devices span from 80-290 N (18-65 lbf) while traditional methods span from 62-178 N (14-40 lbf), highlighting the value of examining forces at the different angles of application. Significant differences in standard deviations were also observed between the 7 techniques indicating that some methods may be more reproducible than others.
Conclusions: Clinically, forces can be applied to endotracheal tubes from various directions. Efficacies of different fixation techniques are sensitive to the angle of force application. Standard deviations, which could be used as a measure of fixator reliability, also vary with angle of force application and method of tube restraint. Findings presented in this study may be used to advance clinical implementation of current methods as well as fixator device design in an effort to reduce the incidence of unplanned extubation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161264 | PMC |
http://dx.doi.org/10.1186/1471-2253-14-74 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!