We investigate the spin-dependent electric and thermoelectric properties of ferromagnetic zigzag α-graphyne nanoribbons (ZαGNRs) using density-functional theory combined with non-equilibrium Green's function method. A giant magnetoresistance is obtained in the pristine even-width ZαGNRs and can be as high as 10(6)%. However, for the doped systems, a large magnetoresistance behavior may appear in the odd-width ZαGNRs rather than the even-width ones. This suggests that the magnetoresistance can be manipulated in a wide range by the dopants on the edges of ZαGNRs. Another interesting phenomenon is that in the B- and N-doped even-width ZαGNRs the spin Seebeck coefficient is always larger than the charge Seebeck coefficient, and a pure-spin-current thermospin device can be achieved at specific temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4nr02426e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!