Introduction: In this communication we report on a novel non-invasive methodology in utilizing "soft" energy diagnostic X-rays to indirectly activate a photo-agent utilized in photodynamic therapy (PDT): Photofrin II (Photo II) through X-ray induced luminescence from Gadolinium Oxysulfide (20 micron dimension) particles doped with Terbium: Gd_{2}O_{2}S:Tb. Photodynamic agents such as Photo II utilized in PDT possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through (visible light) photon absorption, the agents exert their cellular cytotoxicity through type I and type II pathways through extensive generation of reactive oxygen species (ROS); namely, singlet oxygen ^{1}O_{2}, superoxide anion O_{2}^{-}, and hydrogen peroxide H_{2}O_{2}, within the intra-tumoral environment. Unfortunately, due to shallow visible light penetration depth (∼ 2 mm to 5 mm) in tissues, the current PDT strategy has largely been restricted to the treatment of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT.

Methods: X-ray induced visible luminescence from Gd_{2}O_{2}S:Tb particles were spectroscopically characterized, and the potential in-vitro cellular cytotoxicity of Gd_{2}O_{2}S:Tb particles on human glioblastoma cells (due to 48 Hrs Gd_{2}O_{2}S:Tb particle exposure) was screened through the MTS cellular metabolic assay. In-vitro human glioblastoma cellular exposures in presence of Photo II with Gd_{2}O_{2}S:Tb particles were performed in the dark in sterile 96 well tissue culture plates, and the corresponding changes in the metabolic activities of the glioblastoma due to 15 minutes of (diagnostic energy) X-ray exposure was determined 48 Hrs after treatment through the MTS assay.

Results: Severe suppression (> 90% relative to controls) in the cellular metabolic activity of human glioblastoma was measured due to the treatment of clinically relevant concentrations of 20 μg/ml Photo II, with Gd_{2}O_{2}S:Tb particles, and (120 kVp) diagnostic X-rays. Taken together, the in-vitro findings herein provide the basis for future studies in determining the safety and efficacy of this non-invasive X-ray induced luminescence strategy in activating photo-agent in deep seated tumors.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-2011-0311DOI Listing

Publication Analysis

Top Keywords

x-ray induced
16
gd_{2}o_{2}stb particles
16
diagnostic x-rays
12
visible light
12
human glioblastoma
12
induced visible
8
visible luminescence
8
induced luminescence
8
cellular cytotoxicity
8
deep seated
8

Similar Publications

Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.

Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation.

View Article and Find Full Text PDF

Converging lines of research indicate that inhibitory control is likely to be compromised in contexts that place competing demands on emotional, motivational, and cognitive systems, potentially leading to damaging impulsive behavior. The objective of this study was to identify the neural impact of three challenging contexts that typically compromise self-regulation and weaken impulse control. Participants included 66 healthy adults (M/SD = 29.

View Article and Find Full Text PDF

Unlabelled: Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.

Objective: To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum.

Methods: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families.

View Article and Find Full Text PDF

Purpose: To report the radiological outcomes and complications of the Masquelet induced membrane technique (IMT) for acute bone reconstruction in complex hand injuries.

Methods: We retrospectively reviewed 22 patients treated primarily by the IMT for bone defect of the phalanx and/or metacarpals bones in 26 injured digits. The median bone defect length was 17 mm (IQR 13-25).

View Article and Find Full Text PDF

Interfacial Strain-Driven Large Topological Hall Effects in Supermalloy Thin Films with Noncoplanar Spin Textures.

ACS Appl Mater Interfaces

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.

Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!