Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gold nanoparticle (AuNP) modified conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine (SNS-NH2) was used as the biosensing platform for glucose analysis. Electrochemical measurements were carried out by following the consumed oxygen due to the enzymatic reaction of glucose oxidase (GOx) at -0.7V vs Ag/AgCl. Optimisation of pH, enzyme loading, stability experiments were carried out. Effect of NP was investigated by monitoring the signal responses at different AuNP sizes and amounts. A linear relation of y=1.597x+0.264 (R(2)=0.993) was found for glucose concentrations between 0.002 and 5.0mM. The analytical characteristics of the system were also evaluated for glucose determination in flow injection analysis (FIA) mode. Finally, the system was checked for glucose detection on real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2011.01.089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!