A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolomic analysis of meju during fermentation by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS). | LitMetric

Metabolomic analysis of meju during fermentation by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS).

Food Chem

Research Division for Emerging Innovative Technology, Korea Food Research Institute, 516 Baekhyun, Bundang, Sungnam, Kyongki 463-746, Republic of Korea. Electronic address:

Published: August 2011

Changes in the water-soluble metabolites of meju during fermentation were analysed by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS), and the resultant data were statistically processed by partial least squares-discriminant analysis (PLS-DA). Various metabolites, including amino acids, small peptides, nucleosides, urea cycle intermediates, and organic acids, which are responsible for the unique taste and nutritional and functional quality of fermented soy foods, were clearly altered by increasing the fermentation period. Changes in these metabolites allowed discrimination among meju samples with different fermentation periods (0, 10, 20, 40, and 60d) on a PLS-DA score plot, and the fermentation was mainly processed between 10 and 40d of fermentation. Twenty-two metabolites (phenylalanine, glutamic acid, leucine, adenine, citrulline, arginine, glutamine, γ-aminobutyric acid, proline, acetylornithine, valine, pipecolic acid, methionine, citric acid, xanthine, tyrosine, isoleucine, Glu-Tyr, Ser-Pro, tryptophan, Glu-Phe, and Leu-Val-Pro-Pro) with high PLS-DA values of over 1.00 were determined as the major compounds contributing to the discrimination of meju samples. These metabolites, which were positively related to the sensory quality of meju, can be used as fermentation biomarkers for the production of meju and to construct the meju fermentation metabolic pathway. Therefore, our results indicate that monitoring the changes in metabolites during meju fermentation might be important for producing meju-related foods with good nutritional and sensory quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2011.01.080DOI Listing

Publication Analysis

Top Keywords

meju fermentation
20
fermentation
9
meju
8
ultra performance
8
performance liquid
8
liquid chromatography-quadrupole-time
8
chromatography-quadrupole-time flight
8
flight mass
8
mass spectrometry
8
spectrometry uplc-q-tof
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!