AI Article Synopsis

  • Recurrent glioblastoma multiforme (GBM) has a poor prognosis, but the NovoTTF-100A™ System has shown improved overall survival compared to previous trials, offering a median of 9.6 months versus 6.6 months in traditional therapies.
  • Data from a post-marketing registry (PRiDe) involving 457 patients indicated that higher daily compliance and better performance status positively influenced survival rates, with higher one- and two-year survival rates compared to earlier trial results.
  • Adverse events were primarily mild to moderate skin reactions, similar to those reported in prior studies, with no new safety concerns identified.

Article Abstract

Recurrent glioblastoma multiforme (GBM) is a highly aggressive cancer with poor prognosis, and an overall survival of 6 to 7 months with optimal therapies. The NovoTTF-100A™ System is a novel antimitotic cancer therapy recently approved for the treatment of recurrent GBM, based on phase III (EF-11) trial results. The Patient Registry Dataset (PRiDe) is a post-marketing registry of all recurrent GBM patients who received NovoTTF Therapy in a real-world, clinical practice setting in the United States between 2011 and 2013. Data were collected from all adult patients with recurrent GBM who began commercial NovoTTF Therapy in the United States between October 2011 and November 2013. All patients provided written consent before treatment was started. Overall survival (OS) curves were constructed for PRiDe using the Kaplan-Meier method. Median OS in PRiDe was compared for patients stratified by average daily compliance (≥75% v<75% per day) and other prognostic variables. Adverse events were also evaluated. Data from 457 recurrent GBM patients who received NovoTTF Therapy in 91 US cancer centers were analyzed. More patients in PRiDe than the EF-11 trial received NovoTTF Therapy for first recurrence (33% v 9%) and had received prior bevacizumab therapy (55.1% v 19%). Median OS was significantly longer with NovoTTF Therapy in clinical practice (PRiDe data set) than in the EF-11 trial (9.6 v 6.6 months; HR, 0.66; 95% CI, 0.05 to 0.86, P = .0003). One- and 2-year OS rates were more than double for NovoTTF Therapy patients in PRiDe than in the EF-11 trial (1-year: 44% v 20%; 2-year: 30% v 9%). First and second versus third and subsequent recurrences, high Karnofsky performance status (KPS), and no prior bevacizumab use were favorable prognostic factors. No unexpected adverse events were detected in PRiDe. As in the EF-11 trial, the most frequent adverse events were mild to moderate skin reactions associated with application of the NovoTTF Therapy transducer arrays. Results from PRiDe, together with those previously reported in the EF-11 trial, indicate that NovoTTF Therapy offers clinical benefit to patients with recurrent GBM. NovoTTF Therapy has high patient tolerability and favorable safety profile in the real-world, clinical practice setting.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.seminoncol.2014.09.010DOI Listing

Publication Analysis

Top Keywords

recurrent gbm
12
clinical practice
8
novottf-100a™ system
8
patient registry
8
registry dataset
8
dataset pride
8
novottf therapy
8
united states
8
practice experience
4
experience novottf-100a™
4

Similar Publications

Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma.

Cell Rep

January 2025

The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA. Electronic address:

The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls.

View Article and Find Full Text PDF

Background/aim: Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant tumors in the central nervous system of adults. In practice, all patients with GBM experience relapse, and treatment options become limited following first-line therapy. We previously reported a new, successful treatment approach for a GBM patient, implemented in direct conjunction with surgical intervention.

View Article and Find Full Text PDF

Background: Adult glioblastomas (GBMs) are associated with high recurrence and mortality. Personalized treatment based on molecular markers may help improve the prognosis. We aimed to evaluate whether apparent diffusion coefficient (ADC) histogram analysis can better predict MGMT and TERT molecular characteristics and to determine the prognostic relevance of genetic profile in patients with GBM.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

Objective: One of the most malignant types of tumors with a remarkable ability of recurrence rate and aggressiveness is glioblastoma multiforme(GBM). Anyway, according to the restricted remedies accessible for the treatment of this serious tumor, there is no confident and stable therapeutic strategy. Notably, bioinformatics analysis can detect many effective genes in the diagnosis and treatment of GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!