Highly efficient catalytic asymmetric Claisen rearrangements of O-propargyl β-ketoesters and O-allyl β-ketoesters have been accomplished under mild reaction conditions. In the presence of the chiral N,N'-dioxide/Ni(II) complex, a wide range of allenyl/allyl-substituted all-carbon quaternary β-ketoesters was obtained in generally good yield (up to 99%) and high diastereoselectivity (up to 99:1 d.r.) with excellent enantioselectivity (up to 99% ee).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201404643 | DOI Listing |
J Org Chem
January 2025
Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
Reported herein is a concise synthesis of sulfoximidoyl amidines enabled by a Pd-catalyzed cascade aza-Claisen rearrangement and nucleophilic reaction at room temperature. Free -sulfoximines and -allylynamides were employed as the modular building blocks to produce the expected sulfoximine amidine derivatives in highly chemoselective models and in 100% atom efficiency. A broad range of functional groups were well tolerated under these gentle reaction conditions to give the desired products in generally good to excellent yields.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA.
Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P.R. China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331. Electronic address:
We found recently that a C-C bonding phenyl-quinone product was produced with high yield (96%) from the reaction between 2,5-dichloro-1,4-Benzoquinone (DCBQ) and N-phenylbenzohydroxamic acid (N-PhBHA) via an unusual Claisen rearrangement mechanism, accompanied with the concurrent formation of the minor byproducts amide (N-phenylBenzamide, N-PhBA; only 2% yield) and hydroxychloroquinone (2% yield). Surprisingly, when DCBQ was replaced with its reduced form 2,5-dichloro-1,4-hydroquinone (DCHQ), no C-C bonding product was detected, whereas N-PhBA (83% yield) and hydroxychloroquinone (80% yield) became the predominant products, indicating a dramatic mechanistic shift. The ascorbate reduction experiment suggested that it was not DCHQ itself, but its corresponding semiquinone radical, that directly reacts with N-PhBHA.
View Article and Find Full Text PDFJ Org Chem
January 2025
Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
The construction of C-C bonds to form all-carbon quaternary centers remains a significant challenge in synthetic chemistry. Herein, we report a tandem process involving a 1,2-migration of a tetra-coordinated boron intermediate followed by a Claisen rearrangement of the boron enolate, achieved through a reaction between allyl diazoacetates and trialkylboranes. The transformation forms two C-C bonds at the carbenic position of diazo substrate in a single-step operation under neutral conditions.
View Article and Find Full Text PDFOrg Lett
December 2024
Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
Catalysts for Claisen rearrangement have been intensively studied to overcome the need for high temperature. However, previous studies have encountered challenges, such as the need for heating, a long reaction time, and/or the need for equivalent amounts of catalyst. In this study, we introduce an effective electrogenerated boron-based Lewis acid catalyst for the aromatic Claisen rearrangement, which proceeds in a few minutes at ambient temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!