A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimation of carcass composition and cut composition from computed tomography images of live growing pigs of different genotypes. | LitMetric

The aim of the present work was (1) to study the relationship between cross-sectional computed tomography (CT) images obtained in live growing pigs of different genotypes and dissection measurements and (2) to estimate carcass composition and cut composition from CT measurements. Sixty gilts from three genotypes (Duroc×(Landrace×Large White), Pietrain×(Landrace×Large White), and Landrace×Large White) were CT scanned and slaughtered at 30 kg (n=15), 70 kg (n=15), 100 kg (n=12) or 120 kg (n=18). Carcasses were cut and the four main cuts were dissected. The distribution of density volumes on the Hounsfield scale (HU) were obtained from CT images and classified into fat (HU between -149 and -1), muscle (HU between 0 and 140) or bone (HU between 141 and 1400). Moreover, physical measurements were obtained on an image of the loin and an image of the ham. Four different regression approaches were studied to predict carcass and cut composition: linear regression, quadratic regression and allometric equations using volumes as predictors, and linear regression using volumes and physical measurements as predictors. Results show that measurements from whole animal taken in vivo with CT allow accurate estimation of carcass and cut composition. The prediction accuracy varied across genotypes, BW and variable to be predicted. In general, linear models, allometric models and linear models, which included also physical measurements at the loin and the ham, produced the lowest prediction errors.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1751731114002237DOI Listing

Publication Analysis

Top Keywords

cut composition
16
physical measurements
12
estimation carcass
8
carcass composition
8
composition cut
8
computed tomography
8
tomography images
8
images live
8
live growing
8
growing pigs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!