AI Article Synopsis

  • Advances in technology have not significantly improved outcomes for atrial fibrillation (AF) patients due to ongoing uncertainties about its underlying mechanisms.
  • Many electrophysiologists have observed that AF can be quickly modified through targeted treatments, suggesting that AF might not be as chaotic as previously thought but rather influenced by localized sources.
  • Emerging research and ongoing trials are shifting focus toward understanding and targeting these localized "substrates" in AF treatment, resembling approaches used in other cardiac arrhythmias.

Article Abstract

Outcomes for patients with atrial fibrillation (AF) have changed little despite many advances in technology. In large part, this reflects fundamental uncertainty about the mechanisms for AF in humans, which must reconcile diverse observations. Despite the complexity of AF, many electrophysiologists have witnessed modulation of 'chaotic' AF after the first few ablation lesions, or before lines are complete or trigger sites are isolated, and numerous analyses demonstrate temporospatial stability in AF. These common observations challenge the concept that AF is driven by spatially disorganized, widespread mechanisms. Using mathematical techniques applied to other complex systems, evidence is rapidly accumulating that human AF is largely sustained by localized rotors and focal sources. Elimination of sources by Focal Impulse and Rotor Modulation (FIRM)-guided ablation has been shown by independent laboratories to substantially improve success compared with pulmonary vein isolation alone. These data advance our mechanistic understanding of AF. Randomized trials are underway to verify the relative efficacy of ablation at AF sources (substrate) vs. conventional trigger ablation. The renewed focus on AF substrates is a paradigm shift, but also a re-alignment of concepts for AF towards those for other cardiac arrhythmias that are generally defined by sustaining mechanisms (substrates).

Download full-text PDF

Source
http://dx.doi.org/10.1253/circj.cj-14-0478DOI Listing

Publication Analysis

Top Keywords

rotors focal
8
focal sources
8
atrial fibrillation
8
sources
4
sources human
4
human atrial
4
fibrillation mechanistic
4
mechanistic paradigm
4
paradigm direct
4
direct clinical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!