Effect of high electron donor supply on dissimilatory nitrate reduction pathways in a bioreactor for nitrate removal.

Bioresour Technol

Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany; University of Southern Denmark, Department of Biology, NordCEE, Odense, Denmark.

Published: November 2014

The possible shift of a bioreactor for NO3(-) removal from predominantly denitrification (DEN) to dissimilatory nitrate reduction to ammonium (DNRA) by elevated electron donor supply was investigated. By increasing the C/NO3(-) ratio in one of two initially identical reactors, the production of high sulfide concentrations was induced. The response of the dissimilatory NO3(-) reduction processes to the increased availability of organic carbon and sulfide was monitored in a batch incubation system. The expected shift from a DEN- towards a DNRA-dominated bioreactor was not observed, also not under conditions where DNRA would be thermodynamically favorable. Remarkably, the microbial community exposed to a high C/NO3(-) ratio and sulfide concentration did not use the most energy-gaining process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2014.08.073DOI Listing

Publication Analysis

Top Keywords

electron donor
8
donor supply
8
dissimilatory nitrate
8
nitrate reduction
8
c/no3- ratio
8
high electron
4
supply dissimilatory
4
reduction pathways
4
pathways bioreactor
4
bioreactor nitrate
4

Similar Publications

Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.

View Article and Find Full Text PDF

The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.

View Article and Find Full Text PDF

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Thiophene Copolymer Donors Containing Ester-Substituted Thiazole for Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!