Recently, telocytes (TCs) were described as a new cell type in the interstitial space of many organs, including myometrium. TCs are cells with very long, distinctive extensions named telopodes (Tps). It is suggested that TCs play a major role in intercellular signaling, as well as in morphogenesis, especially in morphogenetic bioelectrical signaling. However, TC plasma membrane is yet unexplored regarding the presence and activity of ion channels and pumps. Here, we used a combination of in vitro immunofluorescence and patch-clamp technique to characterize T-type calcium channels in TCs. Myometrial TCs were identified in cell culture (non-pregnant and pregnant myometrium) as cells having very long Tps and which were positive for CD34 and platelet-derived growth factor receptor-α. Immunofluorescence analysis of the subfamily of T-type (transient) calcium channels CaV3.1 and CaV3.2 presence revealed the expression of these ion channels on the cell body and Tps of non-pregnant and pregnant myometrium TCs. The expression in TCs from the non-pregnant myometrium is less intense, being confined to the cell body for CaV3.2, while CaV3.1 was expressed both on the cell body and in Tps. Moreover, the presence of T-type calcium channels in TCs from non-pregnant myometrium is also confirmed by applying brief ramp depolarization protocols. In conclusion, our results show that T-type calcium channels are present in TCs from human myometrium and could participate in the generation of endogenous bioelectric signals responsible for the regulation of the surrounding cell behavior, during pregnancy and labor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286651PMC
http://dx.doi.org/10.1007/s00418-014-1268-0DOI Listing

Publication Analysis

Top Keywords

calcium channels
20
t-type calcium
16
channels tcs
12
cell body
12
tcs
9
myometrium tcs
8
cells long
8
ion channels
8
non-pregnant pregnant
8
pregnant myometrium
8

Similar Publications

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Astrocytes from different brain regions respond with Ca elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes.

View Article and Find Full Text PDF

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by various pathological features including amyloid-β deposition and tau hyperphosphorylation, with cerebral microvascular dysfunction likely playing a role in its progression.
  • Researchers investigated the microvascular responses and potassium channel activity in an AD mouse model induced by streptozotocin (STZ), using behavioral tests and cellular assays.
  • The study found that STZ-AD mice showed poorer performance on behavioral tests and had impaired microvascular responses, which were further deteriorated by exposure to soluble Aβ, indicating a potential link between microvascular dysfunction and AD pathology.
View Article and Find Full Text PDF

Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!