Untangling cross-frequency coupling in neuroscience.

Curr Opin Neurobiol

Max-Planck Institute for Brain Research, Frankfurt am Main 60528, Germany; Frankfurt Institute for Advanced Studies, Frankfurt am Main 60438, Germany; Ernst Strüngmann Institute, Frankfurt am Main 60528, Germany; MEG Unit, Brain Imaging Center, Goethe University, Frankfurt am Main 60528, Germany; Institute of Computer Science, University of Tartu, Tartu 50409, Estonia. Electronic address:

Published: April 2015

AI Article Synopsis

  • Cross-frequency coupling (CFC) is seen as a way to link neural activity across different scales, which could help in studying brain function.
  • Standard methods for analyzing CFC have significant issues, including the fact that what appears to be CFC might just be due to unrelated fluctuations in neural data.
  • The authors suggest better statistical and modeling techniques for understanding CFC, while also offering practical advice to minimize errors and improve the clarity of CFC analyses.

Article Abstract

Cross-frequency coupling (CFC) has been proposed to coordinate neural dynamics across spatial and temporal scales. Despite its potential relevance for understanding healthy and pathological brain function, the standard CFC analysis and physiological interpretation come with fundamental problems. For example, apparent CFC can appear because of spectral correlations due to common non-stationarities that may arise in the total absence of interactions between neural frequency components. To provide a road map towards an improved mechanistic understanding of CFC, we organize the available and potential novel statistical/modeling approaches according to their biophysical interpretability. While we do not provide solutions for all the problems described, we provide a list of practical recommendations to avoid common errors and to enhance the interpretability of CFC analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.conb.2014.08.002DOI Listing

Publication Analysis

Top Keywords

cross-frequency coupling
8
cfc analysis
8
cfc
5
untangling cross-frequency
4
coupling neuroscience
4
neuroscience cross-frequency
4
coupling cfc
4
cfc proposed
4
proposed coordinate
4
coordinate neural
4

Similar Publications

The Readiness Potential (RP) is an important neural characteristic in motor preparation-based brain-computer interface (MP-BCI). In our previous research, we observed a significant decrease of the RP amplitude in some cases, which severely affects the pre-movement patterns detection. In this paper, we aimed to improve the accuracy of pre-movement patterns detection in the condition of RP decrease.

View Article and Find Full Text PDF

Working-memory load decoding model inspired by brain cognition based on cross-frequency coupling.

Brain Res Bull

January 2025

School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China. Electronic address:

Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research.

View Article and Find Full Text PDF

Contralateral Neurovascular Coupling in Patients with Ischemic Stroke After Endovascular Thrombectomy.

Neurocrit Care

January 2025

Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.

Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.

View Article and Find Full Text PDF

Temporal ablation of the ciliary protein IFT88 alters normal brainwave patterns.

Sci Rep

January 2025

Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, 03824, USA.

Article Synopsis
  • The primary cilium is a crucial organelle involved in various signaling pathways, and its dysfunction is linked to conditions like Bardet-Biedl syndrome, Alzheimer's, and autism, all of which can lead to cognitive impairment.
  • Researchers studied the effects of temporarily disabling the IFT88 gene, vital for cilia formation, in adult mice to understand cilia's role in brain activity.
  • The findings showed that mice lacking functional cilia had significant learning deficits and abnormal brainwave patterns, emphasizing the importance of primary cilia for proper neural function and memory in adults.
View Article and Find Full Text PDF

Electrophysiological insights into Alzheimer's disease: A review of human and animal studies.

Neurosci Biobehav Rev

December 2024

Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States.

This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!