There is a constant need in forensic casework laboratories for an improved way to increase the first-pass success rate of forensic samples. The recent advances in mini STR analysis, SNP, and Alu marker systems have now made it possible to analyze highly compromised samples, yet few tools are available that can simultaneously provide an assessment of quantity, inhibition, and degradation in a sample prior to genotyping. Currently there are several different approaches used for fluorescence-based quantification assays which provide a measure of quantity and inhibition. However, a system which can also assess the extent of degradation in a forensic sample will be a useful tool for DNA analysts. Possessing this information prior to genotyping will allow an analyst to more informatively make downstream decisions for the successful typing of a forensic sample without unnecessarily consuming DNA extract. Real-time PCR provides a reliable method for determining the amount and quality of amplifiable DNA in a biological sample. Alu are Short Interspersed Elements (SINE), approximately 300bp insertions which are distributed throughout the human genome in large copy number. The use of an internal primer to amplify a segment of an Alu element allows for human specificity as well as high sensitivity when compared to a single copy target. The advantage of an Alu system is the presence of a large number (>1000) of fixed insertions in every human genome, which minimizes the individual specific variation possible when using a multi-copy target quantification system. This study utilizes two independent retrotransposon genomic targets to obtain quantification of an 80bp "short" DNA fragment and a 207bp "long" DNA fragment in a degraded DNA sample in the multiplex system InnoQuant™. The ratio of the two quantitation values provides a "Degradation Index", or a qualitative measure of a sample's extent of degradation. The Degradation Index was found to be predictive of the observed loss of STR markers and alleles as degradation increases. Use of a synthetic target as an internal positive control (IPC) provides an additional assessment for the presence of PCR inhibitors in the test sample. In conclusion, a DNA based qualitative/quantitative/inhibition assessment system that accurately predicts the status of a biological sample, will be a valuable tool for deciding which DNA test kit to utilize and how much target DNA to use, when processing compromised forensic samples for DNA testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2014.08.007DOI Listing

Publication Analysis

Top Keywords

forensic samples
12
dna
11
copy number
8
quantity inhibition
8
prior genotyping
8
extent degradation
8
forensic sample
8
sample will
8
biological sample
8
human genome
8

Similar Publications

Intra-Individual Stable Isotope Variation Tracks Brazilian Contemporary Dietary and Nutritional Transition.

Am J Biol Anthropol

January 2025

Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.

Introduction: Contemporary dietary and nutritional transitions are commonplace, but difficult to study directly. In Brazil, and Latin America, this generalized process, leading to current obesity and malnutrition problems, started more than four decades ago. Although body weight and food availability are used to measure changes, not much information on food consumption and nutrition exist.

View Article and Find Full Text PDF

The transport of biological materials must protect samples from degradation and ensure courier safety. The main goal of this study was to evaluate the usefulness of a new type of container designed for the secured transport of biological material for storing samples for quantitative RNA analyses. This was achieved by analyzing changes in the expression of selected human leucocyte housekeeping genes (, , and ) using reverse transcription quantitative PCR (RT-qPCR) and digital PCR (RT-dPCR) techniques.

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a leading cause of mortality and morbidity, particularly in forensic settings where determining the cause of death and timing of injury is critical. Glial fibrillary acidic protein (GFAP), a biomarker specific to astrocytes, has emerged as a valuable tool in post-mortem analyses of TBI. A PRISMA-based literature search included studies examining GFAP in human post-mortem samples such as brain tissue, cerebrospinal fluid (CSF), serum, and urine.

View Article and Find Full Text PDF

Postmortem diagnosis of myocardial ischemia remains a challenge in forensic pathology, as traditional methods like autopsy and histology may not always provide conclusive results. Cardiac troponins, specifically cTnI and cTnT, are well-established biomarkers for myocardial injury in living patients, but their role in postmortem ischemia diagnosis is still under investigation. This systematic review aims to evaluate the role of troponins in diagnosing myocardial ischemia in postmortem cases, focusing on the diagnostic accuracy, sample types, and the influence of the postmortem interval (PMI).

View Article and Find Full Text PDF

Background: The detection of explosives in crime scene investigations is critical for forensic science. This study explores the application of laser desorption (LD) ion mobility spectrometry (IMS) as a novel method for this purpose utilising a new IMS prototype developed by MaSaTECH.

Methods: The LD sampling technique employs a laser diode module to vaporise explosive traces on surfaces, allowing immediate analysis by IMS without sample preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!