As analogues of the porphyrinoid and dipyrromethene families of dye, azadipyrromethene (ADPM) derivatives exhibit exciting photophysical properties. Their high absorbance (ε up to 100,000 M(-1) cm(-1)) in the yellow-to-red region and the strong NIR luminescence encountered in boron-chelated aza-BODIPY analogues are especially interesting in the context of light-harvesting and life science applications. In the present study, we endeavoured to compare symmetric and asymmetric tetradentate ADPM derivatives 1-6 versus two related bidentate ADPM references in order to gain insights into their structure-property relationship. This is of interest since the tetradentate motif opens the way for extended π-conjugation through metal-mediated planarization, in a bio-mimicry fashion of metalloporphyrinoids, and is known to induce a bathochromic shift toward the NIR. A new straightforward synthetic approach is used to access asymmetric derivatives 4-6 that avoids the tedious heterocycle formation of nitroso-pyrrole intermediates. In addition, photophysics, electrochemistry, computational modelization (DFT and TD-DFT) and X-ray structural characterization of ADPMs are used to better understand the potential of these new chromophores.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp02629bDOI Listing

Publication Analysis

Top Keywords

photophysical properties
8
adpm derivatives
8
introducing asymmetry
4
asymmetry tetradentate
4
tetradentate azadipyrromethene
4
azadipyrromethene chromophores
4
chromophores systematic
4
systematic study
4
study impact
4
impact electronic
4

Similar Publications

Fluorescence characterization of halophilic archaeal C50 carotenoid-bacterioruberin extracts was investigated using UV/Vis and steady-state fluorescence spectrophotometry in solvents with different polarity. Different extracts showed maximum absorption and fluorescence wavelengths between 369-536 nm and 540-569 nm. Stokes' shifts varied between 50-79 nm depending on the solvent.

View Article and Find Full Text PDF

Stable Luminescent Diradicals: The Emergence and Potential Applications.

Angew Chem Int Ed Engl

January 2025

Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.

Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.

View Article and Find Full Text PDF

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

Metal-free molecular perovskites have shown great potential for X-ray detection due to their tunable chemical structures, low toxicity, and excellent photophysical properties. However, their limited X-ray absorption and environmental instability restrict their practical application. In this study, cesium-based molecular perovskites (MDABCO-CsX, X = Cl, Br, I) are developed by introducing Cs at the B-site to enhance X-ray absorption while retaining low toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!