A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A near-IR uncaging strategy based on cyanine photochemistry. | LitMetric

A near-IR uncaging strategy based on cyanine photochemistry.

J Am Chem Soc

Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Frederick, Maryland 21702, United States.

Published: October 2014

The development of photocaging groups activated by near-IR light would enable new approaches for basic research and allow for spatial and temporal control of drug delivery. Here we report a near-IR light-initiated uncaging reaction sequence based on readily synthesized C4'-dialkylamine-substituted heptamethine cyanines. Phenol-containing small molecules are uncaged through sequential release of the C4'-amine and intramolecular cyclization. The release sequence is initiated by a previously unexploited photochemical reaction of the cyanine fluorophore scaffold. The uncaging process is compatible with biological milieu and is initiated with low intensity 690 nm light. We show that cell viability can be inhibited through light-dependent release of the estrogen receptor antagonist, 4-hydroxycyclofen. In addition, through uncaging of the same compound, gene expression is controlled with near-IR light in a ligand-dependent CreER(T)/LoxP-reporter cell line derived from transgenic mice. These studies provide a chemical foundation that we expect will enable specific delivery of small molecules using cytocompatible, tissue penetrant near-IR light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195383PMC
http://dx.doi.org/10.1021/ja5065203DOI Listing

Publication Analysis

Top Keywords

near-ir light
12
small molecules
8
near-ir
5
near-ir uncaging
4
uncaging strategy
4
strategy based
4
based cyanine
4
cyanine photochemistry
4
photochemistry development
4
development photocaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!