AI Article Synopsis

  • The study discusses how a diversity-oriented synthesis (DOS) pathway sped up the development of a macrocyclic antimalarial agent, which was previously identified through this synthetic method.
  • Researchers focused on altering both the structural features and appendages of the compound to produce a highly effective inhibitor of the malaria parasite P. falciparum, achieving better solubility and stability.
  • The build/couple/pair (B/C/P) strategy was key in optimizing the medicinal chemistry for this antimalarial lead, enhancing its potential for therapeutic use.

Article Abstract

Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure-activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207553PMC
http://dx.doi.org/10.1021/jm500994nDOI Listing

Publication Analysis

Top Keywords

medicinal chemistry
12
diversity-oriented synthesis-facilitated
4
synthesis-facilitated medicinal
4
chemistry development
4
development novel
4
novel antimalarial
4
antimalarial agents
4
agents describe
4
describe medicinal
4
chemistry accelerated
4

Similar Publications

Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.

View Article and Find Full Text PDF

Pharmacognistic, proximate and phytochemical analysis of stem of Cistanche tubulosa (Schenck) Hook. F.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

A medicinal plant is any plant that in one or more of its organs contains substances that can be used by it or their constituent for therapeutic purposes. The present work was done to evaluate pharmacognostic, fluorescence, proximate and phytochemical analysis of ethanolic extracts of Cistanche tubulosa (Orobanchaceae) along with antimicrobial activity. Antimicrobial activity against four bacterial strains S.

View Article and Find Full Text PDF

Plants constitute a source of natural phytochemical components which are widely known for their potential biological activities. This work concerned a study of the antioxidant, anticancer and anti-inflammatory activities of squirting cucumber (Ecballium elaterium L.) parts (flowers, fruits, leaves and stems) using different solvent extracts (cyclohexane, dichloromethane, ethyl acetate, methanol and water).

View Article and Find Full Text PDF

This study evaluated the antioxidant and antiproliferative effects of aqueous, ethanolic and methanolic extracts of Sedum nicaeense flowers and leaves. The MTT assay assessed cytotoxicity against colorectal cancer cells (Caco-2, HCT-116), breast cancer cells (T47D, MCF-7) and normal fibroblasts (MRC-5), while the ferric-reducing antioxidant power (FRAP) assay measured antioxidant capacity. Essential oils from flowers and leaves were analyzed using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

A Chinese isolate of the fungus Penicillium chrysogenum was analyzed using liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry combined with Global Natural Products Social Networking (GNPS) on culture condition leading to the rapid identification of 20 secondary metabolites. Among them are eight polyketones, two phthalides, six diketopiperazine alkaloids, and others. A meleagrine network was examined and proposed as a promising candidate for new natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!