Pyrrolizidine alkaloid-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids exert toxicity through metabolism to dehydropyrrolizidine alkaloids that bind to cellular protein and DNA, leading to hepatotoxicity, genotoxicity, and tumorigenicity. To date, it is not clear how dehydropyrrolizidine alkaloids bind to cellular constituents, including amino acids and proteins, resulting in toxicity. Metabolism of carcinogenic monocrotaline, riddelliine, and heliotrine produces dehydromonocrotaline, dehyroriddelliine, and dehydroheliotrine, respectively, as primary reactive metabolites. In this study, we report that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived valine (DHP-valine) adducts. For structural elucidation, DHP-valine adducts were derivatized with phenyl isothiocyanate (PITC) to DHP-valine-PITC products. After HPLC separation, their structures were characterized by mass spectrometry, UV-visible spectrophotometry, (1)H NMR, and (1)H-(1)H COSY NMR spectral analysis. Two DHP-valine-PITC adducts, designated as DHP-valine-PITC-1 and DHP-valine-PITC-3, had the amino group of valine linked to the C7 position of the necine base, and the other two DHP-valine-PITC products, DHP-valine-PITC-2 and DHP-valine-PITC-4, linked to the C9 position of the necine base. DHP-valine-PITC-1 was interconvertible with DHP-valine-PITC-3, and DHP-valine-PITC-2 was interconvertible with DHP-valine-PITC-4. Reaction of dehydroriddelliine and dehydroheliotrine with valine provided similar results. However, reaction of valine and dehydroretronecine (DHR) under similar experimental conditions did not produce DHP-valine adducts. Reaction of dehydromonocrotaline with rat hemoglobin followed by derivatization with PITC also generated the same four DHP-valine-PITC adducts. This represents the first full structural elucidation of protein conjugated pyrrolic adducts formed from reaction of dehydropyrrolizidine alkaloids with an amino acid (valine). In addition, it was found that DHP-valine-2 and DHP-valine-4, with the valine amino group linked at the C7 position of the necine base, can lose the valine moiety to form DHP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx5002139 | DOI Listing |
Food Chem Toxicol
May 2024
Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA. Electronic address:
Pyrrolizidine alkaloids (PA) are comprised of a family of hundreds of metabolites, produced by plants as a mechanism to protect against herbivory. Upon ingestion and metabolism, dehydropyrrolizidine alkaloids are formed, which are known to generate DNA adducts and subsequently double-strand DNA breaks. Within the liver, the most sensitive cell type to PA exposure is the sinusoidal endothelial cell, as evidenced by the generation of veno-occlusive disease in the human population.
View Article and Find Full Text PDFVet Clin North Am Equine Pract
December 2023
USDA/ARS Poisonous Plant Research Laboratory, Logan UT 84341, USA.
Many toxic plants are unpalatable to horses and are not eaten when alternative forage is available. However, when such plants contaminate prepared or baled feed and forage, herd competition and improved palatability can alter acceptance and thereby cause equine plant poisonings. Dehydropyrrolizidine alkaloid-containing plants; cocklebur; Salvia reflexa; kleingrass, switchgrass, and other saponin-containing grasses; jimson weed, black henbane, and other tropane alkaloid-containing plants; lantana; Cassia spp and other myotoxic plants; castor bean; cyanogenic glycoside-containing plants; thiaminase-containing plants; and hoary alyssum are among those that most commonly poison horses in North America via contaminated feed or forage.
View Article and Find Full Text PDFNeotrop Entomol
October 2023
Forstzoologie und Entomologie, Albert-Ludwigs-Universität Freiburg, 79085, Freiburg i.Br, Germany.
Since 1890, many observations of danaine butterflies visiting dry plants of several families in the Old and New World tropics have been published. For 50 years, it has been recognised that Danainae, along with various other insects, seek out 1,2-dehydropyrrolizidine ester alkaloids (PAs) independently of and in addition to their nutritive requirements and utilise them to increase their chances for survival and biological fitness. This represents an unusual type of insect-plant relationship ("PA-pharmacophagy"), with remarkable peculiarities but also with gaps in knowledge, many of which can be filled by employing PA-baiting.
View Article and Find Full Text PDFArch Toxicol
July 2022
The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
Hepatic sinusoidal obstruction disease (HSOS) is a rare but life-threatening vascular liver disease. However, its underlying mechanism and molecular changes in HSOS are largely unknown, thus greatly hindering the development of its effective treatment. Hepatic sinusoidal endothelial cells (HSECs) are the primary and essential target for HSOS.
View Article and Find Full Text PDFChem Res Toxicol
March 2022
Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States.
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!