Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7 ± 3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/59/19/N171 | DOI Listing |
Med Phys
January 2025
Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA.
Background: The use of in-vivo dosimetry is a long-standing but also labor-intensive component of risk-level assessment for patients with implanted devices. A calculation-only approach, using treatment planning system (TPS)-calculated doses along with imaging doses estimates when relevant, has the potential to streamline the physics workflow without negatively impacting patient safety.
Purpose: To evaluate the feasibility of using a calculation-only approach for risk level assessment for patients with implanted electronic medical devices.
Med Phys
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
Eur Thyroid J
January 2025
G Treglia, Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
Background: In relapsing differentiated thyroid cancer (DTC), the in vivo evaluation of natrium-iodine symporter (NIS) expression is pivotal in the therapeutic planning and is achieved by [131/123I]Iodine whole-body scan. However, these approaches have low sensitivity due to the low sensitivity due to the low resolution of SPECT. [18F]Tetrafluoroborate (TFB) has been proposed as a viable alternative, which could outperform [131/123I]Iodine scans owing to the superior PET resolution.
View Article and Find Full Text PDFCureus
December 2024
Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, USA.
Purpose Low-dose total skin electron beam therapy (LD-TSEBT) has recently gained popularity in treating mycosis fungoides (MF) due to its reduced toxicity and favorable response rates. Combining accelerated LD-TSEBT with the modified Stanford technique (mST), a condensed cycling approach, offers a promising and convenient option. However, in vivo dosimetry data confirming the effectiveness of this approach is limited.
View Article and Find Full Text PDFMolecules
December 2024
Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
The rapid development of nanotechnology during the last two decades has created new opportunities to design and generate more advanced nanotheranostics with diversified capabilities for diagnosis, drug delivery, and treatment response monitoring in a single platform. To date, several approaches have been employed in order to develop nanotheranostics. The purpose of this review is to briefly discuss the key components of nanotheranostic systems, to present the conventional and upcoming imaging and therapeutic modalities that employ nanotheranostic systems, and to evaluate recent progress in the field of cancer nanotheranostic systems in the past five years (2020-2024).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!