Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

Comput Struct Biotechnol J

Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore.

Published: June 2014

To date the Simian Virus 40 (SV40) is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151871PMC
http://dx.doi.org/10.1016/j.csbj.2014.07.001DOI Listing

Publication Analysis

Top Keywords

rna trans-splicing
20
viral rna
16
splice sites
16
trans-splicing
11
viral
9
homologous sv40
8
heterologous viral
8
rna
6
sequences
5
splice
5

Similar Publications

Circular RNA Formation and Degradation Are Not Directed by Universal Pathways.

Int J Mol Sci

January 2025

Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.

View Article and Find Full Text PDF

Conditional Split Inteins: Adaptable Tools for Programming Protein Functions.

Int J Mol Sci

January 2025

School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.

Split inteins are biological mechanisms for the operation of the spatiotemporal control of protein activities. They function through protein -splicing, in which their N- and C-terminal fragments are expressed contiguously with two protein halves. The subsequent self-excision upon recognition of the complimentary fragment yields a mature, complete, and functional protein.

View Article and Find Full Text PDF

'Splice-at-will' Cas12a crRNA engineering enabled direct quantification of ultrashort RNAs.

Nucleic Acids Res

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, P.R. China.

We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering.

View Article and Find Full Text PDF

Kinetoplastids are a clade of eukaryotic protozoans that include human parasitic pathogens like trypanosomes and Leishmania species. In these organisms, protein-coding genes are transcribed as polycistronic pre-mRNAs, which need to be processed by the coupled action of trans-splicing and polyadenylation to yield monogenic mature mRNAs. During trans-splicing, a universal RNA sequence, the spliced leader RNA (SL RNA) mini-exon, is added to the 5'-end of each mRNA.

View Article and Find Full Text PDF

RNA-sequencing has improved the diagnostic yield of individuals with rare diseases. Current analyses predominantly focus on identifying outliers in single genes that can be attributed to cis-acting variants within the gene locus. This approach overlooks causal variants with trans-acting effects on splicing transcriptome-wide, such as variants impacting spliceosome function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!