A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. | LitMetric

The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis.

J Biol Chem

Cardiovascular Research Institute, University of California, San Francisco, California 94158, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158 and Department of Chemistry, University of California, Berkeley, California 94720.

Published: October 2014

Biologic-based strategies to inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) show promise as anti-hypercholesterolemic and, therefore, anti-atherosclerotic therapies. Despite substantial effort, no small molecule strategy to inhibit PCSK9 has demonstrated feasibility. In this study we interrogated the chemistry of the PCSK9 active site and its adjacent residues to identify a foothold with which to drug the PCSK9 processing pathway and ultimately disrupt the interaction with the LDL receptor. Here, we develop a system in which we amplify the readout of PCSK9 proteolysis with a highly specific substrate in cells, showing that the PCSK9 catalytic domain is capable of proteolysis in trans. We use this system to show that the substrate specificity for PCSK9 proteolysis is distinct from the specificity for PCSK9 secretion, demonstrating that PCSK9 processing occurs in two separate sequential steps: that of proteolysis followed by secretion. We show that specific residues in the protease recognition sequence can differentially modulate the effects on proteolysis and secretion. Additionally, we demonstrate that the clinically described, dominant negative Q152H mutation restricts proteolysis and secretion independently. Our results suggest that the PCSK9 active site and its adjacent residues serve as an allosteric modulator of protein secretion independent of its role in proteolysis, revealing a new strategy for intracellular PCSK9 inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200258PMC
http://dx.doi.org/10.1074/jbc.M114.594861DOI Listing

Publication Analysis

Top Keywords

pcsk9
12
pcsk9 active
12
active site
12
proteolysis secretion
12
proprotein convertase
8
convertase subtilisin/kexin
8
subtilisin/kexin type
8
type pcsk9
8
sequence differentially
8
protein secretion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!