Astrophysics: Quasar complexity simplified.

Nature

Department of Physics &Astronomy, University of Wyoming, Laramie, Wyoming 82071, USA.

Published: September 2014

Download full-text PDF

Source
http://dx.doi.org/10.1038/513181aDOI Listing

Publication Analysis

Top Keywords

astrophysics quasar
4
quasar complexity
4
complexity simplified
4
astrophysics
1
complexity
1
simplified
1

Similar Publications

Refractive lensing of scintillating FRBs by subparsec cloudlets in the multiphase CGM.

Proc Natl Acad Sci U S A

September 2024

Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada.

We consider the refractive lensing effects of ionized cool ([Formula: see text]) gas cloudlets in the circumgalactic medium (CGM) of galaxies. In particular, we discuss the combined effects of lensing from these cloudlets and scintillation from plasma screens in the Milky Way interstellar medium (ISM). We show that, if the CGM comprises a mist of subparsec cloudlets with column densities of order [Formula: see text] (as predicted by [M.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent research suggests that supermassive black holes may suppress star formation in massive galaxies by driving large outflows, but concrete evidence has been scarce, especially in the young universe where star formation happens quickly.
  • - Although outflows of ionized gas are commonly observed, they don’t contain enough mass to hinder star formation, with more effective gas ejection expected in neutral and molecular phases that are only seen in more extreme conditions like starbursts and quasars.
  • - New spectroscopy from the JWST reveals a massive galaxy at a redshift of 2.445 undergoing rapid star formation suppression, detecting a significant outflow of neutral gas that should effectively halt star creation, indicating that supermassive black holes can rapidly quench
View Article and Find Full Text PDF

The identification of sources driving cosmic reionization, a major phase transition from neutral hydrogen to ionized plasma around 600-800 Myr after the Big Bang, has been a matter of debate. Some models suggest that high ionizing emissivity and escape fractions (f) from quasars support their role in driving cosmic reionization. Others propose that the high f values from bright galaxies generate sufficient ionizing radiation to drive this process.

View Article and Find Full Text PDF

A high black-hole-to-host mass ratio in a lensed AGN in the early Universe.

Nature

April 2024

NSF's National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ, USA.

Early JWST observations have uncovered a population of red sources that might represent a previously overlooked phase of supermassive black hole growth. One of the most intriguing examples is an extremely red, point-like object that was found to be triply imaged by the strong lensing cluster Abell 2744 (ref. ).

View Article and Find Full Text PDF

Tight relationships exist in the local Universe between the central stellar properties of galaxies and the mass of their supermassive black hole (SMBH). These suggest that galaxies and black holes co-evolve, with the main regulation mechanism being energetic feedback from accretion onto the black hole during its quasar phase. A crucial question is how the relationship between black holes and galaxies evolves with time; a key epoch to examine this relationship is at the peaks of star formation and black hole growth 8-12 billion years ago (redshifts 1-3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!