Influenza causes serious and sometimes fatal disease in individuals at risk due to advanced age or immunodeficiencies. Despite progress in the development of seasonal influenza vaccines, vaccine efficacy in elderly and immunocompromised individuals remains low. We recently developed a passive immunization strategy using an adeno-associated virus (AAV) vector to deliver a neutralizing anti-influenza antibody at the site of infection, the nasal airways. Here we show that young, old, and immunodeficient (severe combined immunodeficient [SCID]) mice that were treated intranasally with AAV9 vector expressing a modified version of the broadly neutralizing anti-influenza antibody FI6 were protected and exhibited no signs of disease following an intranasal challenge with the mouse-adapted H1N1 influenza strain A/Puerto Rico/8/1934(H1N1) (PR8) (Mt. Sinai strain). Nonvaccinated mice succumbed to the PR8 challenge due to severe weight loss. We propose that airway-directed AAV9 passive immunization against airborne infectious agents may be beneficial in elderly and immunocompromised patients, for whom there still exists an unmet need for effective vaccination against influenza.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248762 | PMC |
http://dx.doi.org/10.1128/CVI.00572-14 | DOI Listing |
Brain Res Bull
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:
J Control Release
January 2025
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, PR China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, PR China; Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, PR China. Electronic address:
The blood-brain barrier (BBB) is a formidable barrier that restricts the entry of substances into the brain, complicating the study of brain function and the treatment of neurological conditions. Traditional methods of delivering genes from the periphery to the central nervous system (CNS) using adeno-associated viruses (AAVs) often require high doses, which can trigger immune responses and hepatotoxicity. Here, we developed a new AAV variant named AAVhu.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
Viral contamination of bivalve molluscs, such as oysters, is a well-recognized food safety risk. The aim of this study was to assess virological hazards in market-ready oysters on the Dutch market. Non-targeted metagenome analysis was first performed on norovirus spiked-in samples showing linear and sensitive detection of norovirus GI.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
Long-term potentiation (LTP) and long-term depression (LTD) are widely used to study synaptic plasticity. However, whether proteins regulating LTP and LTD are altered in cognitive disorders and contribute to disease onset remains to be determined. Herein, we induced LTP and LTD in the hippocampal CA3-CA1 Schaffer collateral pathway, respectively, and then performed proteomic analysis of the CA1 region.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Division of Cardiovascular Science, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK.
Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!