Although bisphenol A (BPA), a representative endocrine-disrupting compound, has been detected frequently in landfill leachate, effective technologies for BPA removal from landfill leachates are limited. We used high silica Y-type zeolite (HSZ-385) for the selective adsorption of BPA from landfill leachate, and factors affecting this adsorption are discussed. Higher removal efficiencies at pH 5.0-9.0 imply that neutral BPA is adsorbed more easily onto HSZ-385 than monomeric or divalent BPA anions. An increase in ionic strength and sodium acetate concentration did not affect BPA adsorption significantly, while the removal efficiency decreased slightly when more than 50 mgC/L of humic acid was added. HSZ-385 was applied to synthetic leachates that simulate the composition of landfill leachate at various degradation stages. In young acidic leachates that contain sodium acetate, the use of HSZ-385 for the adsorptive removal of BPA appears to be more effective than in old alkaline leachates, which contain large amounts of humic acid. In addition, 82 % BPA removal was achieved from young raw leachates using HSZ-385, which demonstrates that selective BPA removal from actual landfill leachate has been achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-014-3522-3 | DOI Listing |
Sensors (Basel)
December 2024
Division de Fotónica, Centro de Investigaciones en Óptica AC, Loma del Bosque 115, Col. Lomas del Campestre, León 37150, Guanajuato, Mexico.
Methylene blue is a cationic organic dye commonly found in wastewater, groundwater, and surface water due to industrial discharge into the environment. This emerging pollutant is notably persistent and can pose risks to both human health and the environment. In this study, we developed a Surface Plasmon Resonance Biosensor employing a BK7 prism coated with 3 nm chromium and 50 nm of gold in the Kretschmann configuration, specifically for the detection of methylene blue.
View Article and Find Full Text PDFToxics
December 2024
School of Resource and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
The rapid development of the global chemical industry has led to widespread groundwater contamination, with frequent pollution incidents posing severe threats to water safety. However, there has been insufficient assessment of the health risks posed by chlorinated hydrocarbon contamination in groundwater around chemical industrial parks. This study evaluates the chlorinated hydrocarbon contamination in groundwater at a chemical park and conducts a multi-pathway health risk assessment, identifying the key risk pollutants.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy.
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFMolecules
December 2024
Institute of Meteorology and Water Management, National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland.
In this study, the results of a comprehensive assessment of the variability in the occurrence of ten perfluorinated compounds (PFAS) in fish tissues originating from 2014 to 2019 from six fisheries in the Baltic Sea are presented. A total of 360 fish samples of three species (perch, herring and flatfish) were analysed. For the determination of PFAS, both linear and branched stereoisomers, LC-ESI-MS/MS technique preceded by simultaneous SPE isolation was validated and applied.
View Article and Find Full Text PDFMolecules
December 2024
Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM's feasibility for photocatalytic processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!