Metabolic acidosis (MAc), a decrease in extracellular pH (pHo) caused by a decrease in [HCO3 (-)]o at a fixed [CO2]o, is a common clinical condition and causes intracellular pH (pHi) to fall. Although previous work has suggested that MAc-induced decreases in pHi (ΔpHi) differ among cell types, what is not clear is the extent to which these differences are the result of the wide variety of methodologies employed by various investigators. In the present study, we evaluated the effects of two sequential MAc challenges (MAc1 and MAc2) on pHi in 10 cell types/lines: primary-cultured hippocampal (HCN) neurons and astrocytes (HCA), primary-cultured medullary raphé (MRN) neurons, and astrocytes (MRA), CT26 colon cancer, the C2C12 skeletal muscles, primary-cultured bone marrow-derived macrophages (BMDM) and dendritic cells (BMDC), Ink4a/ARF-null melanocytes, and XB-2 keratinocytes. We monitor pHi using ratiometric fluorescence imaging of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein while imposing MAc: lowering (pHo) from 7.4 to 7.2 by decreasing [HCO3 (-)]o from 22 to 14 mM at 5% CO2 for 7 min. After MAc1, we return cells to the control solution for 10 min and impose MAc2. Using our definition of MAc resistance [(ΔpHi/ΔpHo) ≤ 40%], during MAc1, ∼70% of CT26 and ∼50% of C2C12 are MAc-resistant, whereas the other cell types are predominantly MAc-sensitive. During MAc2, some cells adapt [(ΔpHi/ΔpHo)2 < (ΔpHi/ΔpHo)1], particularly HCA, C2C12, and BMDC. Most maintain consistent responses [(ΔpHi/ΔpHo)2 ≅ (ΔpHi/ΔpHo)1], and a few decompensate [(ΔpHi/ΔpHo)2>(ΔpHi/ΔpHo)1], particularly HCN, C2C12, and XB-2. Thus, responses to twin MAc challenges depend both on the individual cell and cell type.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269672 | PMC |
http://dx.doi.org/10.1152/ajpregu.00154.2014 | DOI Listing |
Angiogenesis
January 2025
Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).
View Article and Find Full Text PDFDrugs Aging
January 2025
Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
IgG4-related disease (IgG4-RD) is an immune-mediated disorder characterized by organ enlargement and dysfunction. The formation of tertiary lymphoid tissues (TLTs) in affected organs is crucial for understanding IgG4-RD, as T follicular helper (Tfh) 2 cells within TLTs drive IgG4+B cell differentiation, contributing to mass formation. Key cytokines IL-4 and IL-10, produced by Tfh2 cells, are essential for this process.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China.
A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.
View Article and Find Full Text PDFClin Exp Med
January 2025
Universitat Autònoma de Barcelona, Bellaterra, Spain.
Alcohol-related cirrhosis (AC) is a condition that impacts in immunity. We analyzed changes over time in CD4subsets in AC-patients. We included patients with alcohol use disorder admitted at least twice for treatment.
View Article and Find Full Text PDFCytotherapy
December 2024
Department of Medicine, Kuopio University Hospital, Kuopio, Finland. Electronic address:
The amount of CD34 cells has been for decades the most important marker of autologous graft quality, but other graft cells, including various lymphocyte subsets, have gained some interest. This review attempts to summarize what is known about autograft cellular composition regarding post-transplant outcomes. The amount of CD34 cells in the graft is associated with tempo of platelet recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!