A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corticospinal sprouting differs according to spinal injury location and cortical origin in macaque monkeys. | LitMetric

The primate corticospinal tract (CST), the major descending pathway mediating voluntary hand movements, comprises nine or more functional subdivisions. The role of subcomponents other than that from primary motor cortex, however, is not well understood. We have previously shown that following a cervical dorsal rhizotomy (Darian-Smith et al., 2013), CST projections originating from primary somatosensory (S1) and motor (M1) cortex responded quite differently to injury. Terminal projections from the S1 (areas 3b/1/2) shrank to <60% of the contralateral side, while M1 CST projections remained robust or expanded (>110%). Here, we asked what happens when a central lesion is added to the equation, to better simulate clinical injury. Monkeys (n = 6) received either a unilateral (1) dorsal root lesion (DRL), (2) or a combined DRL/dorsal column lesion (DRL/DCL), or (3) a DRL/DCL where the DCL was made 4 months following the initial DRL. Electrophysiological recordings were made in S1 4 months postlesion in the first two groups, and 6 weeks after the DCL in the third lesion group, to identify the reorganized region of D1-D3 (thumb, index finger, and middle finger) representation. Anterograde tracers were then injected bilaterally to assess spinal terminal labeling. Remarkably, in all DRL/DCL animals, terminal projections from the S1 and M1 extended bilaterally and caudally well beyond terminal territories in normal animals or following a DRL. These data were highly significant. Extensive sprouting from the S1 CST has not been reported previously, and these data raise important questions about S1 CST involvement in recovery following spinal injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160766PMC
http://dx.doi.org/10.1523/JNEUROSCI.1593-14.2014DOI Listing

Publication Analysis

Top Keywords

spinal injury
8
motor cortex
8
terminal projections
8
corticospinal sprouting
4
sprouting differs
4
differs spinal
4
injury
4
injury location
4
location cortical
4
cortical origin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!